
Introduction to The Theory of Computation
-> Much of computer science is about solving

a problem using an

efficient algorithm .
In contrast

,

our main question throughout
this first chapter is - which problems cannot be solved by
an efficient algorithm ?

-> The key topic of this course : The limits of using algorithms
to solve problems.

What are the 3 central areas -> Automata
, computability ,

and complexity
of the theory of computation ? - They are all linked by the question : What are theFundamental capabilities

& limitations of computers ?

-> Each area answers this question differently
What is complexity theory

?
&

refers to figuring out the complexity of an algorithm ,
and quantifying

the resources required to solve computational problems .

- central question : What makes some problems computationally hard
,
and

others easy?

-> the objective : to classify problems as easy ones and hard ones

What is computability theory ? -> deals with what can & cannot be computed on a particular computing
model

-> the objective : to classify problems by those that are solvable & those that

are not

What is automata theory
?
- deals with the definitions and proporties of mathematical models of

computation.

-> there are several models of computation that we will learn about within this
-

theory
. For example :

· "Finite automation" model - used in text processing ,
compilers ,

and

hardware design.

· "Context-free grammar "model-used in

programming langs and artificial

intelligence .

->Concepts in the lecture notes but not the text :

· "trap" or "dead"State

· im : A reg = A ray ... meaning of

·

A n B... what is

& Nonregular &001"/n203
= E2

,
9

,
0011

,
000111 , - .. 3

· roof of computation tree

Part 2 : Automata and Languages
Ch2 : Regular Languages 1. 1 Finite Automata

What is a computational -> An "idealized computer" used to help us understand what a computer is

model' and how to theorize about them.

What is the finite artomation ? - Also called the "Finite state machine .

"

-> the simplest computational model

-> A good model for computers with an extremely limited amount of memory.
->EX : an automatic door (like at grocery stores) !

·
a computer that has just a single bit of memory , capable of recording
which of 2 states the controller is in - OPEN Or CLOSED-as well as

receiving a limited no - of input Signals Laka people arriving
Example of anabstract) finite M1

automation ? - - a state diagram of M,

0, 1

·

92: represents the start state (bk arrow pointing at it from nowhere)

·

92
: represents the accept state (indicated by the 2 circles

·

by
:

a third state

·

the arrows are called transitions

How does this automation
2.

receives a binary in put String (oF Os and 1s)

2-

(M2) work ? processes the symbols one by one from left to right , moving itself from

one state to another along the transition that has that symbol Laka

number) as its label

3

After reading the last symbol ,
M

, produces its output :

· if the machine ends in an accept state (aka q2) ,
the output is accept

·

else
,

the output is reject
Example ? -> Feed the input 1102 to the machine :

2.
start in statea

2. Read 2
,

follow transition from
9 , to a 2

3
Read 1

, go from
ge

to 22

↑
Read O

, go
from 22to 93

5.
Read I go from gy to 22

6
ACCEPT biC M

,
is in an accept state at 92

What pattern can be revealed -> experimenting with a variety of inputstrings reveals that Me accepts any

regarding the machine ? Stringthat either afends with a I
,

or blends with an even number of Os !

finite automata ?

I
-> they must have exactly one transition exiting every state for

What are some rules about ->

they are allowed to haveLaccept stakes I don't need to have one

each possible input symbol ,

What is a "tuple" ? -> A list of elements
,

for ex
,

a 5-tuple is a
list of b elements

.

What is the formal - A deterministic finite automaton (DFA) is a 5-tuple

automation ? 1. & is a finite set
,

called the states

2 . S is a finite set
,

called the alphabet
· represents the "inputalphabet"

· indicates the allowed in put symbols

definition of a finite

↑
CQ

,
E

,
S

, 90
,
F)

,
where

-

· for Ex
,

with binary string inputs ,
E = 50,

13

3. S : Qx2-Q is the transition function

&is the startstate sept states.

What is some relevant info - E = "is an element of "

on set notation ? -> C = "is a subset of
"

(RECALL: COMP283)) -> let set A = Sa
, 923 and set B = Eb

, b2 , by3

-> the notation AXB describes the Cartesian product of set A and set B
,

resulting in a set of all ordered pairs where the first element is a member of A and

the second is a member of B

· A xB = E(a
,

b
,
)

,
(a

, bz)
,
(a

, by) ,
192

,
b

,
)

,
(92

, b2) , (az , by)3
-> the notation : D- > R describes a function o with a domain D that

"maps" onto a range R

So what does "S :QXhTQ" -> describes the transition frection as a mapping that begins with Jaka
,
has

mean ? a domain of) the Cartesian set of all possible combinations of states (Q) and

input symbols (2)
,

where each combination maps to /results in some state Q

-> transition functions are used to define the ruses of moving .

How can we denote specific +Ex :*
rules of transition functions?

· if the automation is in state x when it reads an input symbol of I
,
it moves

to stateI
· We can indicate this same sentiment by sayingG(X ,

1) = y

-S(g(Q ,
c(q) = g7Q

definition to describe

I
M1

0, 1

How do we use the formal -> Lets go back to example M2 :

individual finite automata ? diagram

->Formal description of M2 :

↑
- -State

M2 = (Q
,
E

,
5

, 92
,

F)
,
where

2. Q = 29
,, 92

,933
2. [= 20

,
23

&

3 . S is described as

D I

9
, 9

, 92

829392
9
, 9292

&

4
g

,

is the start state ,
and

5. F = 2923 .

-> The state diagram & formal definition of a given machine contain the same

information
, just in different forms,

What is a language ? -> a set of strings.
-> if A is the set of all strings that machine M accepts ,

then we say

that A is the language ofMachine M-denoted L(M) = A

·

we say this as "M recognizes A "

-> A machine may accept several strings ,

but it always recognizes only1 language.
-> If a machine accepts no strings , it still recognizes a language ! Namely

,
the

empty languageI
How can me discuss the language - example My : let

of an individual finite automation ? A = Ew/w contains at least one 1 and an

even number of Os follows the last 13

(notation : "A is the set of all elements Such that w contains at least ...

Follows the last 2
.

")

->Then L(M2) = A
... also known as "My recognizes

A" "

CLARIFY : What does "accept" -> "accept" is a verbused to describe a machine's relationship to a string of

mean in this context ? input symbols.
· A machine "accepts" a string if the machine ends in one of its accept

States (2 circles) after reading every symbol in the string
.

mean in this context ?

I
La"language" being some specific set of strings, usually defined by some rules)

CLARIFY : What does "recognize" -> "recogniza" is a verb used to describe a machine's relationship to a language .

· A machine "recognizes" a language if it "accepts" every element of

the language set laka
every string).

What is the formal

definition of a finite -> Le + M = (Q
,

8
,

8
, 90 ,

F) be a finite automation and let

each we is a member of the alphabet Er.

(So "W" represents any possible string of

automaton's computation? ↑ w = W
, W] ... Wh be a string where

in pri symbols , like "O 1 01110")

Then
, Maccepts w if a sequence of states to

, 12. .. in

in Q exists with the following 3 conditions :

1 .

To = 90

& that the machine starts in the start State
, go

↳
S(r

;,Witz) =

Vixe ,
for i = 0, ...,

n - 2

(that the machine goes from state to state according to the

transition function)
,

and

3 :

Un EF

(that the machine accepts its input if it ends up in an

"ACCEPT "State

We say that M recognizes language A if

A = Ew/ M accepts w3

What is a regular language? -> A language is called a regular language if there exists a DFA that

recognizes it.

- The Regular Operations-
What are the regular -> The three "operations on languages" ,

used to study properties of the

operations ? regular languages.

->

ANALUGY : if in arithmetic
,

the basic objects arehis and the tools

are operations for manipulating them - e . g. +
,

y
,

-

,
+ etc-

then in the theory of computation
,

· the objects' are languages ,
and

· the 'tools' are the regular operations - operations specifically
designed for manipulating them.

-> There are 3 regular operations : Union
,

concatenation
, and star.

I
· concatenation : Ao B = Exy/xEA and

y -B3

Let A andB be languages .

· Union : AuB = Ex/xEA or XtB3

·Star : A
*

= EX1 *
z * /K = 0 and each XA3 .

What is the union operation? - takes all of the strings ,
in both A and B

,
and lomps them

together into one language.

What is the concatenation -> attaches a string from A in front of a string from B in all possible

What is the star operation? - A unary operation lapplying to just one language) ,
unlike the other

operation ? ↑ ways to get the strings in the new language.

2 which are binary operations .

->Works by attaching any number of strings in A together to get
a string in the new language .

-> the empty string [is always a member of Ano matter what

(since "any number of "includes zero) .

Example for understanding -> let E = the standard 26 letter alphabet Sa
, b ,

.
. . 23

the regular operations ? if A = Egood,
bad3 and B = Eboy , girls ,

then

· AUB = E good,
bad

, boy , girl3
· AoB = E good boy , goodgirl , badboy , badgirl3
· A= &E

, good ,
bad

, good good , goodbad, badgood,
badbad,

good good good , goodbedbad , goodbadgood,
3

What is a "class" ?T basically a set whose elements are themselves sets

What does it mean if a set/ -> A collection of objects is closed under some operation if
applying that

class is "closed" ? operation to members of the collection returns an object still in the

collection.

What is a Fundamental fact -> The class/collection of all regular languages is closed under all three

about the regular operations ? of the regular operations.

· Aka
,

if A and B are regular languages ,
then so are AUB

,
AoB,

and A Land BP

-> There are proofs in the textbook
proving this for all 3 operations.

I
-> When a DFA <deterministic Finite automaton) reads the next

Part 2 : Automata and Languages
Ch2 : Regular Languages 1. 2 Nondeterminism

What is deterministic
↳
- When every step of the computation follows in exactly one

, unique

computation ? way
from the previous step

Symbol ,
we know exactly what the next state will be - it is determined.

~

-

Everything we looked at in the prev section were DFAs
.

What is different about a -> in nondeterministic Finite automatoes (NFAs)
,

several choices

nondeterministic machine? may exist for the next state at any point .

0, 1

Example of an NFA ? &↓ s a Ea->Mmmmmmmmmmmma DFA ? but in an NFA a state may have zero
,

one, or many exiting arrows for each alphabet

symbol.

·

gyhas Lexiting arrows for the input I

·

gz has no arrows for I

-> DFA-labels on arrows are symbols from the alphabet. NFAs can have arrows with

the label [
so

How do NFAs compute ? - When the NFAarrives at a state with multiple ways to proceed (like if

we were at g and the next input symbol is a I
,
we can either stay in gy or

more to 92) ,
the machine splits into multiple copies of itself and

then follows all of the possibilities in parallel.

· each copy of the machine takes one of the possible paths & then continues on

reading the input

·

Every time there are choices
,
the machine "splits" again

-> NFAs are like a parallel computation where multiple independent
" threads" can becoming concurrently .

What happens when the NFA arrives -> Similar : without before reading any further input ,
the machine splits into

on a state that has E on an exit at least two but possibly more copies - one that stays at the current

arrow ?
state

,
and one following each of the exiting E-labeled arrows.

· For ex
,
when it arrives at g and the next symbol is a 0

, Ny splits

into 2 copies befor reading the next symbol - one that stays at 92 and

one that advances to 23

What does it mean for a

I
-> If the next input symbol doesn't appear on

my of the arrows exiting

Copy 10 % the NFA) to "die" ? the state occupied by a copy
of the machine

,
then that copy

"dies" along with the branch of computation associated with it
.

·

as in
,
that copy will no longer read & react to input symbols

·For ex
,
if a copy

of N2 is in gy
& the next symbol is a 0,

that copy dies permanently.

H) ow do NFAs arrive at an
-> Of all of the copies & their paths

,
if any one copy of the machine ends in the

output (aka ALLEPT or REJECT) ? accept state
,

then the NFA accepts the input string!
-> One way to reason about/understand an NFA is to think about a "tree" of

computation tree ?

↑
multiple choices.

Ni 2

possibilities ,
with branches corresponding to points at which the machine has

Example of N2 as a
->e s an Ea

-> Consider the computation of N
,

on input dollo :

Symbol read Outcome

⑨ O · Starting at state g2 and reading a 0
, Ny has only one

O ↓ possible outcome--back to 9 1

2

9
, 1. The machine splits to follow each choice : One copy in gy ,

and one moving to ge

W
Y · An a arrow is exiting 92

, meaning that immediately upon entering the

9, 92 - 93
state

,

the machine splits again ;
↓
XX -> One copy remaining in the -> Onecopy following the [arrow1

current State (921

OB1 ↓ 1. Just like before
,
the copy on 8 , Splits : one copy staying at 9 ,

& one moving to 92

⑳ 9
Er ·Just like before

,
the 92 copy splits due to the [exiting arrow.

1 XX
· The copy on9y moves to 9

- 2. Copy on g
,

dies since no exiting arrow for symbol I

9 ,
+ 9 9j Es ·

Copy on 9
,

results in copies on 9. , 92
,
9

↓

I X X

·

Copy on9, moves to 9
-

·

Copy on 9
, stays at 9

0 -

n
W -- O. Copy on 9

, Stays at 9
,

·

Copy on9, dies

9, 93 9j Es ·

Copy on 92 moves to ge
· Copy on 9

, stays at 9 , (x2)
L

-> Since at least I copy ended on an accept State (91) ,
we can say that Ne accepts the substring 010110

->
By continuing to experiment ,resee that ((N ,

) = EW/10IEW 121EW3 (Ne accepts all strings that contain either 101 or 11 as a substring)

I
-> In an NFA

,

the transition function takes a state & an input symbol or the

What is the fundamental difference -> The transition function

between NFAs and DFAs ? - In a DFA
,

the transition function takes a state & an input symbol as

its input
,

and produces the next state (S : Qx[-Q)

What is some relevant notation -> For any set Q ,
we write PCQ) to be the power set of Q

, meaning the

needed to define an NFA ? collection of all possible subsets of Q

· for ex
,

if A = 21
,
2

,
33

,

P(A) = [23
,
513

,
523

,

533
,

51
,
23

,
51

,
2

,
33

,
51

,
33

,
52 ,33 3

Whatis the formal definition ↑
empty string as its input

,
and produces the set of possible next states !

-> For
any alphabet &

,
we write I

,
to be [V &93 (the alphabet

AND Jaka Union ara"V") the empty string a

of an NFA ? * nondeterministic finite automaton is a 5-tuple
CQ

,
E

,
S

, 90
,
F)

,
where

1. Q is a finite set of states

2 . S is a finite alphabet

3 . S : QX & < P(Q) is the transition function
-.

g
,

EQ is the start state

5.
FGQ is the set of accept states

.

What is the meaning of the -S : QX&< P(Q)
,

where Stakes an input of the Cartesian set of

transition function ? all possible combos of States (Q) and input symbols plus the empty string (Ga),
and produces the power set of Q

,
aka the set of all possible next states

.

What is the formal description

of Ny ? -> Ne = (Q
,
5

,
8

,
9
,

F)
,

where 2s an a1 . Q = 29
,,

92
, 93

,

9 , 3
2. E = 50

, 23

3
. S is given as

O 1 E

92 29.3 59
.,

923 ⑨

92 5933 ① 5933

as & 2903 ⑨

9r 2963 29
j

3 Q

4
g ,

is the start state
,
and

3
. F = 2903

I
member of Es

Let N = (Q
,&, 8

, 90 ,
F) be an NFA

,
and w be a string

of the computation of an
over the alphabet &

NFA ? (we can write was w = Y
, Yz ... You ,

where each y ,
is a

Then
,
we say that Naccepts W if a sequence of states

To
,2 rm exists in Q with the following 3 conditions :

1. Vo = go

(that the machine begins in the start state

What is the formal definition

↑
->

&

2. VEG)Vi , Yite) ,
for i = 0, ...,

m-1
,
and

3. TmEF

& that the last state
, rm

,
is an accept states

What does the condition 2 -> That when the NFAN is in state Us and reads the input Symbol Yi+ 2

statement mean ? Lake the next symbol after the one that caused N to be in Vi)
,

the state

Vi+ 2
is one of the allowable next states

NFAs versus DFAs

What does it mean for two -> If they recognize the same language.
machines to be "equivalent ? -> Every NFA has an equivalent DFA. - Proven theorem

What is the relationship between -> An NFA is like a fancier version of a DFA. However
,

NFAs are not able to recognize

NFAs and DFAs ? a larger class/scope/set of languages than DFAs (surprisingly).

-> DFAS and NFAs recognize the same class of languages.

-> Every NFA can be converted into an equivalent DFA - and constructing NFAs

is
usually easier than directly constructing NFAS.

·

Describing an NFA for a given language can be easier than describing a DFA for it.

-> The equivalent DFA
may have many more states - if an NFA has K states

,

then it has 2 subsets of statess

· The DFA simulating the NFA will thus have I States.

What does this theorem mean
-> A language is regular if and only if there exists some NFA that recognizes

for regular languages ? it

I
-> nee is a

Converting an NFA into a DFA

Example NFA N :

N

s the language that N recognizes : L(N) = SW/ w has a I in the second-to-

· let N = CQ
,
E

,

8
, 90 ,

F) represent the NFA above .

~ let M = CQ'
,

Si
,

S
, 90' ,

F') represent the DFA that we will construct from it.

What will be the states of our
-> RECALL that the transition function for an NFA returns some subset of Q laka some

-

DFA ? subset of states) .
The set that encapsulates every possible subset of Q is PCQ) .

~ The states of our DFA M will be all of the elements of PCQ) !

·

e
.g., each state of M represents one subset of the states of N.

the equivalent DFA ?

↑ &

in N.

9j = 2923

last position 3

> M works by having each of its states represent the states that "have a copy" of the NFA.

·For ex
,
if we run M and Non the same input ,

if at some point M is in state " 9
,, 92"

then at the exact same point
,

N currently has copies in states g anda
OK so how do we actually create 1. Make alist of all of the DFA M's States ; e . g .,

all the subsets of the set of states

Q = &P
,

52
,

3
,

2923
,

59
,

3
,

29
,9

,
3 [9

, 93 3
,

E92
,93 , E2

,,
92

,
9933

2. Make the start state of your DFA the same as theStartState of the NFA
.

3.
For the accept state(s) K Of NFAN

,
mark every state of M which contains K in its

subsat
,

as an accept state of M.

F = 59
,

3
,

59
,
933

, 2929,
359

, 929 %
3

(Because gy is the accept state of N) .

↑
Draw the outline of M's state diagram , indicating start & accept states.

992 92 9a P

929292% 92929 9293

I
W's state diagram to figure out where

they should point.

5. For states of M which are equivalent to states in N Jaka subsets" of size 2) :

· For each possible input symbol , draw one arrow leaving the state
, referring to

- Nondeterministic Input : if for input symbol Fo the state has exactly one arrow exiting it

arrow into your
M State diagram.

· Forex
,

in N
, g

,
has I arrow for symbol "O" and g ,

has I arrow for both symbols :

↳↑
(in N) ala

nothing NFA-peculiar is happening ,
then duplicate the transition

992 92

0,2

, 9 P

92 929s 92929 929392

I
-> ANALOGY : In arithmetic

,
we use operations (like + and -) to build up

Ch2 : Regular Languages 2.3 Regular Expressions
What is a regular expression? -

expressions describing languages !

expressions whose values equate to numbers ;

(3 + 3)xy = 32

· In models of Lump ,
we can build expressives - out of the regular operations-

whose values equate to languages.

-> "O"and "I " are shorthand for the sets 503 and 213

· So the expression "O UI " alone results in the language [O ,
13

Example of a

regular expression? ↑ (8 v1)09

·

RECALL A = Egood,bad3 ; B = Eboy , girl3 ; AUB = Egood ,
bad

, boy , girl3
-> "O & "then means 2039

,

and its value is the language consiting of all strings
containing any number of Os (including &)

· RECALL At "Works by attaching any number of strings in A together
to get a string in the new language .

"

What is implicitly present in this
- The concatenationSymbol,

expression ?
-> Just like how the multiplication symbol

X is usually implicit in arithmetic expressions,

especially with parentheses.

-> So (O VI) O
*

is actually shorthand for 10 UI) o OP

· RECALL AoB = E good boy , goodgirl , badboy ,
badgirl3

· attaches the strings from the 2 parts ,
20

,
13 and 903

*
in all

possible ways
- this forms the value of the entire expression !

-> Thus
,

we can describe the expression (0 V2) ** as the language of all

strings that

· start with a 0 or a 1

·

proceed to contain any number of Os (or none)

· for ex
,

[03
,
513

,
200003

,
32004

What is another ex of a

regular expression ? -> 10 (1) *
= 20 , 13

*
= the language consisting of all possible

strings of
any number of Os and Is

How can we use & for -> if & (the alphabet of a given machine) is 20 , 13
,
for ex

,
then we can

regular expression shorthand?
Write & as shorthand for the expression (0 UI)

->More generally ,

for
any alphabet &

,

the regular expression & describes the

language consisting of all strings of length 1 over that alphabet.

. 3
*

describes the language of all strings (of
any length) over that alphabet.

· for ex
,
if G = 50

, 13
,

E
*

contains 20
,
1

,
02

,
1011

,
00

, 10012, ... 3

What is the order of + Unless parentheses change the usual order
,
the order of operation

regular operations ? precedence is

2) star operation (*)

20 concatenation (0)
30

Union operation <V(

-> Similar to PEMDAS with arithmetic.

What is the formal

definition of a regular
-> Say that R is a regular expression if R is

1. a for some a in the alphabet &
expression?

(the regular expression "a"represents the language as (

2 . E

(the regular expression "&"represents the languageE3)
3 .

D
(the regular expression "O" represents the empty language)

4
(R2 URz) , where R

,
and R2 are regular expressions

3 .

(R
,

0 Rz) ,
where R

,
and R2 are regular expressions

,
OR

6.
(R*)

,
where R

,
is a regular expression .

& We write L(R) to be the language described by the regular expression R
.

What is the difference between -> The expression & represents a language containing a single string-namely,
E and I ? the

empty string
-> The expressionO represents a language that doesn't contain any strings .

What is the relationship -> the two are equivalent in their descriptive power.

between regular expressions
->

Any regular expression can be converted into a finite automaton that

and finite automata ? recognizes the language it describes
,

and vice versa !

-> Theorem 1 . 5 : A language is regular if and only if there exists some

regular expression that describes it.

More examples of regular
- Assuming & = 31

, 03

expressions?
R LIR)

0% 100% & w/w contains exactly one 13

215 & wh w contains at least one 13

Jaka (0 (1)
*

1(0 VI)")

14(0114)4 & w/every O in w is followed by at least

one 13

(EE)+

Sw I w has an even lengths
(0vG)o(IVz) & 01

,
0

,
1

, 23-- "Os" is equivalentto "O"

I
A = 20 "1" In 203

Part 2 : Automata and Languages
Ch2 : Regular Languages 2. & Nonregular Languages

What is a nonregular
-> A language that cannot be recognized by any finite automation

.

language? -> For example , the language

is irregular,
because the machine seems to need to remember /count how

many Os have been seen so far
,

as it reads the input.

· Since the no of Os isn't limited
,

the machine will have to keep track of

anlimited no - of possibilities
,
which it can't do bl it doesn't

have unbounded memory.
!

How do
you prove that a language

->
There are 2 techniques :

is nonregular ? & fooling sets

bo the pumping lemma

What is the pumpingMmmmmmproperty :

that all strings in that language can be "pumped" if they are at

least as long as a certain special value called the pumping length.
-> If we can show that a language does not have this property ,

then we can

garvantee/prove that it is not regular

What does it mean that a
-> that each string in the lang contains a section which can be repeated

language can be "pumped" ? any number of times
,

with the resulting string remaining a correct

component/element of that language.

What is the formal pumping
lemma theorem ? ->

if A is a regular language ,
then there is a number p (the

pumping length) where
,
if s = any string in A of length Ip

thens may be divided into 3 pieces,

S Xyz ,
while satisfying the following conditions :

1. for each 110
, Xy"2 EA

1. y" = I copies of
y

concatenated together. For ex
,

05 = 00000

· also remember that yo = d

2 .

lyk8
1 ly1 ~ the length of the substring y) ,

and

3 . (x y) = p

(the pieces X and y together have a length
,a mostof p)

lemma actually saying ?

I
M1

0, 1

The regular language

Wait so what is the pumping
-> Lets return to the DFA M2 as an example :

A = Ew/w contains at least- ·ne 1 and an even number of Os

follows the last 13

is recognized by My
.

-> If we assign the "pumping length" p
= the no · of states in My= 3,

then we know that the length of the "sequence of states" that My passes-

through whilst reading a string of length p (3) will be p + 1
o

because

we also consider the start state (befor the first symbol is read) !

-> And thus
,
if My only has 3 states but passes through & while reading

(where Isl = 3)
,
then that must mean that the sequence contains a repeated state.

· For ex
,

the string 102 (which is accepted by M2)

↑ [p0p2p

19293 a

this is the sequence of states
, of length N

. State g
,

is repeated .↑
length ,

and either X or I may have a length of 0.

-> For the splitting of into substrings , xyz ,
we let

y equal the sequence

of input symbols that takes the machine from one state back to that state.

·

NOTE : as long as the lemma conditions are satisfied Jaka that (xy/Ep)
,
it

doesn't matter how long each of X
, y ,

& z are
- they don't have to be of even

-> for s = 10 2
,

we let
y

= 02
,

since that substring takes M
,

From 92 back to 92

· then X = 1 and = 3 (nothing

-> In this example ,
we can create new strings repeating portion y

as many

times as we want
,

and those strings will still be accepted by My !

·

y effectively doesn't move the machine at all (brings it back to where it started)
,

which is why we can repent it endlessly .

See condition 1 : Xy"zEA
100101010 V

10101 V

2 W (xj z ,
akaXz)

(Notes) -> p doesn't have to be the # of states (if given a DFA)
,
that was just an ex.

-> ISI I p ; just chose to make it length p in this example .

How do we use the

I
-> All we have to do is find just one strings (which is accepted by B) for which

pumping lemma to one of the 3 lemma conditions isn't satisfied .

prove that a language
-> To prove that a language B is nonregular

:

is nonregular ?
1. First assume that B is regular ,

in order to obtain a contradiction.

2. Use the
pumping lemma to "guarantee" the existence of a pumping

length p such that all strings in B of length = P can bepumped. "

it)
.

3. Find a specific strings in B where Is11p ,
but that cannot be pumped.

4. Demonstrate that I cannot be pumped by considering all ways of↑
I basically state this false guarantee so that you can then contradict

dividings into X
, y ,

and 2 (taking cond . 3 of the pumping lemma into

account if convenient)
5. For each of these "potentials" divisions

,
find a value I such that

xyzB
What is the significance

-> That it can prove some languages to be nonregular
- that is

,

that we have

of the pumping lemma ? found a problem which cannot be solved by an algorithm !

· RELALL the main question that this course seeks to answer (pg6/
First

pg of notes)

- A summary of Chapter 1-

↳ - 2 different
, though ultimately equivalent in their scope ,

methods of

describing languages (more specifically
, regular languages) :

1. Finite automata - DFAS and NFAs

2. Regular Expressions
-> While

many languages can be described with these
, some simple ones cannot !

· For ex
,

2011" In 203

-> For
every NFA there exists an equivalent DFA.

Ari Kumar COMP 155-002

Due February
2

,
2021 Homework 1

2.
a

a) SEE U55V & Va

b)2"0009 Lake &% 10003 · 99]

c) 1
*

(2001) (2
%))4

2. E = 213 Describe a DFA that recognizes A = E1/K is a multiple of 33 :

Let Mz = EQ
, &, 8

, 92 ,

F 3
,

where

2 . Q = Eq
, 192 ,933

2. E = E13

3. S is described as

1

9
, 92

92 90

93 92

↓. I 2 is the start state
,

and

5 . F = 2923

State Diagram of M2 :

⑨ Ea
↑

Examples of accepted inputs : Examples of rejected inputs :

& 3-- aka 10
, assuming that OEK 213

21113 2223

21111113 211113

HW1

3 . Let Nz = SQ
,
&

,
8

, 91 ,

F3
,
where

2
.

Q = 29
.. 923 State Diagram of N2 :

2
. 9 = 20

,
13

3. S is given as *

1
1

⑨2259232821923

·
i #

4. 92 is the start state
,

and

5 . F = 2923

· N2 satisfies the rules defining an NFA because it contains a state with several exiting arrows for

an in put symbol (92) ; as well as a skate with no exit arrows for each symbol (92).
· We can describe the language A recognized by N2 ,

LCN2) = A
,

as

A = Ew/ W doesn't contain any zeroes 3
,

where w is a string of input.

- N2 begins in the accept state and remains there until it reads a zero
, meaning

that it will accept a

string containing any no
.

of Is
,
as well as the empty string.

-> As soon as N2 reads a O
,
it permanently leaves the accept state g, since there are no transition arrows

exiting 92 .

Thus
,

we see that N2 will accept any string that is either empty
,

or consists solely of 1s .

· We can prove that the following statement

"if M is a DFA that recognizes a language A
,
then swapping

the accept states

of M with the non-accept states of M results in a DFA M1 that recognizes A
.

"

will not hold true if it were instead talking about NFAs
,

by imagining the NFA Ne ,
which swaps the accept

and non-accept states of N2
,
and then

proving that Ne does At recognize A.

N2 State diagram :

Nz = EQ
,
G

,
8

, &2
,

F 3
,

where

xt 1 .
Q = 29 ,, 923

9
,

0
,1992

2
. 9 = 20

,
13

3. S is given

asanl as does not
4. 92 is the start state

,
and

5 . F = 292 3

"

HWI
· the language A would then represent all strings which are not in A

,
which we can describe as

= & w/w contains at least one O 3
·

According to
page 36 (Ch1 . 1) of "Introduction to the Theory of Computation, " a machine M

always recognizes only 1 language A
,

and that this language A is the set of all strings that M

accepts.

· Therefore
,

we can prove that N2 does not accept A by finding at least one string accepted by N2
,
which is

not an element of 5
.

·

let string S = 11
. according to the definitions

,
&A (and SEA)

. Running
the strings on N2 ,

we see that N2 des accepts . Therefore
,

the machine Ne

which is a swapped-state iteration of N2
,

does net accept the language A

· The example NFA N2 proves that the previous statement regarding DFAs does not

hold true for NFAs .

4. Prove that A = 202 :

1
: / : 203 is nonregular. S = 20, 13

Let A = E02
: 1"/1103

.
We use the pumping lemma to prove that A is not regular.

This proof is by contradiation.

Assume to the contrary that A is regular .

A satisfies thpe pum inglemma. Let p be the pumping
length given by the lemma .

Chooses to be the string2010·

If we let p = 1
,

s = 000000002211
.
Therefore

,
we know that S is a member of A

,
and that

S has a length greater than p .

The pumping lemma then guarantees thats can be split into 3

pieces ,
s = Xyz , satisfying the 3 conditions of a lemma. We consider 3 cases to show that this

result is impossible.

1. the string y consists of only 0s . For example ,
let p

= 3 :

s = 013 = 000000111
W

No matter what p is
,

if y is some number of Os
,
then the string xy"z will have more than twice

the amount of Os than Is and So is not a member of A
, violating condition 1 of the

pumping lemma. This case is a contradiction
.

· for ex
,
if y

= 00
, xyyy2

= 000000000111
,

and xyyy2A
2.The string y consists only of 1s .

This case also gives a contradiction because Xy"2
will have more Is than Os

. Additionally ,
condition 3 (that IxylEP) will also be violated

because strings will always begin with 20s. For ex ;
· let p = 3 so S = 000000111

. If we allow y : "I"
,
z = "11"

,
and x = " 000000"

,
then

Ixy) = 7
,
which is greater than 3.

3. The string y consists of both Os and Is
.

This case is immediately impossible as it violates

condition 3. The first I in s = 02p1P doesn't occur until 2p symbols have been

read
.

To include both Os & Is in y ,
the length of xy must be at least 2p + 1.

Thus a contradiction is unavoidable if we make the assumption that A is regular,
so A is

not regular.

Quiz 1

MI
-> is①
&

I Accept states :

19002
, 91) (9001

,82me 18
, 9

. 7 (90
,9 .) (900

, 9)
⑤

2 ((9
, 92) ,

0) = (S(9 ,
0)

,
8

,

19
,01)

M3 :
↓ b

⑭⑮ 9
. 92

=

(90
,
9

,
)⑭ S (2 ,

9
,
) , 2) = (8(9 , 2)

,
82(9

.,
2)]

979
% 0 ,
0) = 900 ↳ ↳

2
, (9 ,

0) = a
,

=(9
, 92)

⑭Ce

#
-> My must "accep" exactly when either M

,
or Me would accept

-> simulates both M
,

and Me

->
upon input , Simulate both individually

- but can't "remind the type"
for each (r

,
52) -Q and each a S

,
let

5 ((r, 52) , a) = (Sr, (a) , 82152 ,9))

90 = (9
,,
92)

grammars ?

I
regular expressions)

Part 2 : Automata and Languages
Ch2 : Context- Free Languages 2. I Context - Free Grammars

What are context-free -> A more powerful method for describing languages (than finite automata or

-> can describe certain features that have a recursive structure .

->Similar to regular expressions in that they basically denote a set of "rules" that a

string must conform to in order to be part of that specific grammar's language.
What are some applications of -> In the study of human languages

context-free
grammars (CFGs) ? -> In the specification & compilation of programming languages.

What are "context-free -> The collection of languages associated with context - Free grammars.

languages" ? -> Includes all regular languages ,
as well as many additional languages.

-> A language is context - free if there exists some CFG that generates it
.

What are pushdown automate ?ym 0
0+ + -

What does a mar -> A collection of substitution rules
,

also known as "productions"
consist of ? -> each rule appears as a line in the grammar that is comprised of

* symbol
-

a variable -

on the left side and a string of variables and

other symbols - known as terminals -

on the right side
, separated by an arrow.

What are the key terms that - Lets use the example of the
grammar Cy :

describe the components of a A- > 0A1

grammar ? t A -> B

2. B -

1. the substitution rules : the lines/statements of this lang
2. The variables : often represented by capital letters

.

Are on the left side of

each rule.

· variables of G2 : EA ,
B3

3. The start variable : one of thevariables is designated as the "start variable"
,
and is

the first one that you write down when generating a string of the language.

·

by convention
,
the start var usually occurs on the left side of the topmost rule.

·

start var of G2 : A

4. The terminals : Analogous to the input alphabet (like in finite automatal - basically
the set of symbols out of which the grammar's strings are generated.

· often represented by lowercase letters
,

numbers
,

and/or special symbols.

· terminals of G : 50
,
1 , # 3

to describe a language?

I
1. Write down the start variable (which is the variable on the left side of

How can we use a grammar
+ By generating each string of that language ,

in the following manner :

the first rule
,

unless stated otherwise) ;
A

1 . Choose one of the variables that is written down (like A
,
which wejust

down')
,

and find a rule that starts with that variable.

Replace the written-down variable with the string that its arrow

rule : * -> 0A1

A OA1

3
. Repeat Step 2 until no variables remain Jaka your 'written down string

consists only of terminals).

What is a "derivation" ? -> The
sequence of substitutions used to generate a string in <(G)↑ points to ;

With "B"

Example ? -> For example ,
a derivation of string 000221 in

grammar Gy is :

* = 0A1 =00A11 =) 000A111000B121 =000111

V I I
in all 3 of these

,
we used rule I to replace used rule 2 used rule b to replace

every "A "with "O AI"
to replace "A"

"B" With "

#
"

-> We can say that "the grammar G generates the string 000111"

What is a parse tree ? - A diagram that illustrates how a string gets generated
-> A pictorial way to represent the same info as a derivation.

Example ? -

The
parse tree for 000 XIII in Grammar Gyi

(
What does L(6) denote? - "The language of a grammar 6"

-> All strings that can be generated using a derivation or parsetree of a

grammar G
,

constitute the language of the grammar
· RECALL : a "language" is a set of strings

-> L(G2) = 2
,
0 x1

,
00x21

,
000X 111,

, ...
3

-> TODO : copy down engl language example be its 2001

copy down "compiler" example from lecturenoteslos

in the substitution rules ?

I
-> We use it to abbreviate several rules that have the same

What abbreviation is used7 The I symbol ,
which represents an "or"

left hand variable
,
into one line

.

Example of the symbol ?
- G2 :

can be G2 :

A + 0AI equivalently A - 0A1/B

A- B written as B-

B -

#

What is the formal definition A context-free grammar is a N-tuple (V
,
&

,
R

,
S)

,
where

2 . & is a finite set
, disjoint from V

,
called the terminals,

of a context-free grammar ? ↑ 1. V is a finite set called the variables
,

·

disjoint =
no common elements between V and E

3. R is a finite set of rules
,

with each rule being : a variable

and a string of variables & terminals ,
and

4. SEV is the start variable .

What does "yields" mean
-> Denotes a conversion (following a rue path) where one or more variables is converted

in CFGs ? into the string that its arrow points to

-> If u
,

v
,

and ware strings (of both variables & terminals)
,

and A-w

is a rule of the grammar ,
we say

that Ar yields nwv

·

written as ArUwv

· with "yields" ,
it isn't necessary for the 'yielded string to consist

only of terminals.

What does "derives" meanin -> We can say that u derives v (written as u*V (if either

CFGs ? a) u = v
,

or

b) There exists some sequence Ye
,
"2

,
My

...k for K 10 and

n =) uz = uz =) ... uk = v

What is the notation to
-> &we [

·

IS E W3

describe the language of
->

basically saying
: the set of all strings w such that

a grammar ?
· W is made up of

any number/combo of the set of terminals, E
· There exists some derivation that begins at the start variable and

returns w

I
files are compiled intoclass files of by tecrde

,
made up of Os and Is

How do context-free grammars
-> A compilertranslates code written in a prog . language into

-> To do this
,

the compiler uses a process called parsing to extract

the meaning of the code.

relate to computer programming?

↑
another form that is more suitable for execution (like in Jara

,
where java

· One tangible representation of this meaning is to view the prog.

language as having a context - free
grammar ,

& considering the

parse tree for the code !

What is an ambiguous -> A
grammar is ambiguous if it is able to generate the same string in

grammar
? more than one way (more than one pathway of rules to follow

-> We say that a string is "derived ambiguously" from a grammar
if it can be

derived from the grammar in more than one way
-> to be derived ambiguously ,

the string must have 2 or more parse trees
,specifically-

not necessarily z or more derivations.

Why can't derivations -> Because 2 derivations can differ merely in the order in which they replace variables

indicate ambiguity ? while being identical still in structure
.

What are the implications of
- A grammar

that generates strings ambiguously can sometimes be undesirable

ambiguous grammars
?

for
programming languages (& other similar applications).

Why ? Because in those situations
,
a program should be able to obtain a

Unique interpretation of
every string in the lang

.

Example of
an ambiguous

-> Grammar G : (let "E"beshort for "EXPRESSION")

2 + (E + E)/(t x E)/Ela
grammar

?
-

(notice the use of the "or" operator. Og is actually composed of Bruces)

-> G
, generates the string "a + axa"

ambigously , by either applying
E + E + E or E-EXE First : E

E = Ext = z + E + E =) a + axa

--

I

Er /
② = E + E = a + E + E = a + axa

E
-

-

e
Note : the derivations above don't necessarily
indicate the ambiguity ,

but the parse trees do.

I
ambiguity of a grammar !

What is a leftmost -> A specific type of derivation that replaces variables in a fixed order

derivation ?
· More concentrated on structure

,
and therefore can be used to discern

-> A derivation of a string win a grammar G is a leftmost derivation if at

every step ,
the leftmost remaining variable is the one that gets replaced.

Example? - Let
grammar

G
,

be a CFG where V = ES3 and E = SD
, 13

(2) S - OSIS

(2) S + 150S
the empty string I can also be on the right side of a rule.

(3) S -> 20 ·

Turning a variable into2 means it j dissapears
, basically

-> This derivation for Oll100 is leftmust :

-> in this step
, only the leftmost S is replaced ,

in

this case t2 (rule 3)
-> the other s remains

↑
S 015015011SOS = 011ISOSOS0111 OSOS↑ ---

- -

What is the formal => 01110
_

05 = 011100

definition of an ambiguous -> A grammar is ambiguous if it can generate the same string using
grammar ? 2. or more leftmost derivations .

What does "inherently
->

Sometimes there are ambiguous grammers for which we can find an

ambiguous" mean ? unambiguous grammar that generates the same language .

-> But some context - free langs can only be generated by ambiguous grammars-
these are called inherently ambiguous languagess

What is the relationship -> For
every DFA

,
there exists an equivalent (FG !

between CFGs and DFAs ? - We can construct a CEO for a regular language by referring to its DFA.

What are the Steps to created + For ex
,

take DFA My that recognizes language A (L(M
,) = A) and

p
2CFG out of a DFA ? ↓ F A = Ew/w ends in 003

-> 90-4920992
&

T
1

2. make a variable R
;

for each state g ,
of the DFA :

3 = Ro
,
Ra

,
R

CFG out of a DFA ?

I
8 : 01 8(90

,

0) = 9
, Ro > ORI

What are the steps to create a 2. Add the rule R
:
-> a Rj to the CFG if S(q ;,

a) = e
;

is a transition in the DFA :

(continued) 9
.

9
, 9 8(%

0
,
1) = 90 Ro - 1Ro

E
, 92%0 8(9

,,
03 = 92

R
,

+ ORz

a2229
S(9

,,
1) = 90 R

,
- IRo

8192
,

03 = 92 R2 - 0Rz

2(92
,
1) = 20 Rz- 1 Ro

3. Add the rule R
; <& for the DFA's accept state 9 ::

R2 >a

4. Make R
;

the start variable of the grammar
for the DFAs start state gi :

S = Ro

-> The resulting equivalent. CFG to My is grammar G2
,

which generates
the

language A (L(6) = A) :

Ro + ORz/1Ro

R2
- ORz/1R =↑ -> We can see for ourself this is true by deriving the string 10100 :

R + ORz/Irs/a

R
=

=) 1R= =) 10Rz = 101R = 1010Rz =) 10100Rz
=> 20100(8)

What is another way to -> If the CFL isn't also a regular language
(So we can't use a DFA) ,

we

design a CFG for a can construct a CFG by breaking the CFL into simpler pieces and

context-free language ? constructing individual grammars for each piece.

·

Many CFLs are the union of simpler CFLs

-> We can then merge the individ - grammars back together

Example of this technique?
-> Lets generate a CFG for the language EOUIV/n203 UEIO/n203

1.
Construct a grammar for the 1st part of the language (EOUIV/n203) :

S- 0S2/E

2. Construct a grammar for the 2nd part of the language (EIO"/n203)
,using a

different variable :

S > 150/S
2 2

(C+d next page)

I
->

basically adding a rule with a new variable that "directs"/"refers" the

3. Construct a new grammar that contains all the rules from the other grammars,

as well as a new rule of the format J-Jz/J1 ... / JK ,
where the

variables J2
,
Jc

,
-- - Sin are the start variables of the other individ grammars

Grammar G2 which generates language L= SO"1" /n203 vEI" In 203 :

S - S2/5z

Sys0S21/E

S2915,
0/3↑

combined grammar to all of the littler ones.

What is the Chomsky -> Away to put a CFG into a simplified form
,
which can be useful

normal form ? in giving algorithms for working with CFGs.

-> DEFN : A CFG is in Chomsky normal form (CNF) if
every

rule is of the form

A CBC

As a

· where A
,

B
,
CEV

,
a El

,
and neither B nor Care the start variable.

(so basically the start variable isn't allowed to be on the right-hand side of

a rule

·in addition
,

the rule S 92 is allowed
,
where S is the start variable.

Can
any

CFG be converted
-> Yes !

into CNF ? -> Theorem : Every context - free
grammar can be converted to an equivalent

CFG which is in Chomsky normal form .

I
-> Equivalent in power to CFGs Jaka

, they also recognize all CFLs)

Part 2 : Automata and Languages
Ch2 : Context- Free Languages 2. 2 Pushdown Automata

What are pushdown automata? ->
a type of computational model (like DFAs and NFAs)

-> Basically an NFA that also has an extra component called a stack.

RECALL : Why can't DFAS or NFAs -> because they have a limited ("finite") memory ,
and most nonregular languages

recognize nonregular languages ? (like L= G0"IV/n103) require a recognizing machine to be able to "count" the

number of each type of in put symbol received in order to calculate whether a given

string is a part of that language
· but to count & keep track of so

many symbols requires unbounded memory.
·

this idea is basically the basis of the pumping lemma proof.

-> As opposed to
regular languages ,

where a series of 'rules' (via transition functives

&States) is enough to be able to recognize strings of any length

·With regular langs ,

no need to "keep track" of the symbols being read.

Whal is the difference betweenSummdeterministic & nondeterministic set of possible outcomes/choices

pushdown automata (PDAs) ? - Nondeterministic Pushdown Automata are stronger than deterministic PDAs-

they recognize a larger class of languages.

· Unlike with finite automata
,
where DFAs and NFAs are equivalent in power

and recognize the exact same class of languages.

Which type of PDA will we focus on ? -> Only nondeterministic PDAs are equivalent to CFGs in their power,

So we will focus on those
.

Unless stated otherwise
,

assume

PDA to mean "nondeterministic pushdown automata"

Recap ofModels learned thus far

computational model language recognized
Deterministic Finite Automata Regular Languages

Nondeterministic Finite Automata Regular languages

Context - free Grammar Regular languages

Context-free languages
Pushdown Automata

Regular languages

Context-free languages

Why are PDAs useful ? - We now have z options for proving a language is context-free · We can either give
·

a CFG that generates it or ·a PDA that recognizes it

-> Certain languages are easier to describe with CFGs
,
and vice

Versa with PDAs.

What is a stack ? -> A component that provides additional
memory beyond the finite amount

available in the control .

-> Valuable because it can hold an unlimited amount of information.

-> A PDA is able to recognize languages that NFAs and DFAs can't (like

L from prev . page) because it has a stack that allows it to hold/store numbers

of unbounded size ! Diagram of a finite automation.

State control

N

Diagram of a Pushdown automation :
a a b b input

State control

I states & transition
N

functions)
A a b b input

N

stack
urse

How does the stack work ? - a PDA can write symbols on the stack & read them back later

·

writing a symbol "pushes down" all the other symbols on the stack

-> At any time
,

the symbol on top of the stack-aka
,
the most recently added symbol-

can be read and removed.

How can we visualize the "stack" ? -> RECALL COMP210 ! Stack is a data structure defined by "last in
,
first out

"

->

Imagine a stack of plates resting on a spring
- When a new plate is placed

on top of the stack
,
the rest of the plates below it are pushed down.

· If you want to take out a plate ,
it must be the one on top of the stack (or else

you'll make a mess trying to pull one out from the middle T
F

What is "pushing" and "popping"
?
-

pushing : Writing a new symbol on (to) the stack - I
->

popping : Removing a symbol Calla the most recently added one) from the stack

So how does a PDA actually
-> Lets take the example nonregular language L= EO" IV In 103

work ? note that the CFG for L is A COALIE (V= A
,
& = 50 ,

13)

-> The PDA Pe reads symbols from the input and functions like so :

·

everytime P2 reads a O
,

it pushes it onto the stack

· As soon as (and everytime) Pe sees a 1
,

it pops a O off the stack

· if P2 finishes reading the input exactly when the stack becomes empty (all OS

popped) & input accepted

· ifthe stack becomes empty While Is remain to be read

-
·

if the input is finished but the stack isn't empty &

> input rejected
· if a 0 appears in the input after a 1

a PDA ?

I
&, &

,

and go are basically the same

How do we formally define
-> similar to formal defof an NFA

, except for the stack ;

What is the"formal" defn
- Formally ,

the stack is a device containing symbols drawn from some

of the stack ? alphabet.

-> Themachine can use different alphabets of symbols for its input and its

stack
,

so now we must also specify a stack alphabet ,
8

What is the domain of a
->

aka
,

what are the components that
may determine the next more of a PDA ?

PDA's transition function ? -> ANS: The current state
,

the next input symbol read
,

and the top symbol of the stack

· since the current state could be any gEQ , the next input could beany
at &,

and the top stack symbol could be
any - EN

,
we'd define the domain as the

Cartesian set of all possible combos of the 3

-> Additionally ,
either the input or the stack symbol are allowed to be (where

the machine moves wo reading a symbol from the input
,

or who reading a symbol from

the stack)

· RECALL that E
=

= &UEE3
-> Therefore

,
we define the domain of the transition function & as

PDA's transition function?

↑
and reads an input symbol (from EC ?

Qx[
=
+

What is the range of a -> aka
,

what are the possible next moves of the PDA when it is in a particular situation

-> ANS : It
may enter some new state or stay at its current state. And it

may or

may not write some new symbol on top of the stack.

·
we can write this as the cartesian set of states (Q) and stack symbols (i)
(since an input will result in the PDA being at one of the Q states and adding one of the

↑
a symbols to stack) : Q To

sotherange is QXY ? -Umm no ! Not jus+ yet .
Since this is a nondeterministic machine

,
the PDA can

have several possible next moves .

->
So we should return a Set of members of Q ...

the power set

P(QXn)
· represents the set of all possible next states

RECALL : What is a powerset ? -PLB) = the power set of B = the collection of all possible subsets of B

·for ex
,

if B = 21
,
2

,
33

,
P(B) = &E3

,
[13

,
523

,

533
,

31
,
23

,
51

,
2

,
33

,
51

,
33

,
[2 ,

343

So what is our final PDA -

Putting it all together,
transition function ?

S : Q + E< P(Q +)

So what is the formal

I
A pushdown automaton is a 6-tuple (Q

,
E

,
48

,
90

,

F)

definition of a
where Q

,
S

, Mand Fare all finite sets
,
and

pushdown automata? 1. . Q is the set of states
,

2. G is the input alphabet,
3. T is the stack alphabet

,

4. S : Qx[
,
x < P(QX*a) is the transition function

,

5. 9
,
EQ is the start state

,
and

6. F & Q is the set of accept states .

When does a PDA accept - APDA M = (Q
,

&
,
4

,
8

, 9
,
F) accepts an input w lif w can be

an in put ? written as w = WzWz ... Wm) where :

· each wie &s
·

a sequence of States To
,
Vz ...,

"mEQ and a sequence of strings
So,1 ...me To↑ branch of the computation)

(where S
; represents the Sequence of stack contents that M has on the accepting

exist such that the following 3 conditions are satisfied :

2 . 8 = 9
,

and So &

-> that M begins in a start state & with an empty stack

2. for i = 0,,
m-1

,
we have (ri + 2 ,

b) EG(ris Witz
,

a)
,
where

Si = at and Sitz= bt for some

a
,
be T2 and ter

- this condition basically states that M moves properly according to the state
, stack,

and next input Symbol .

3. Um F

-> that an accept state occurs atthe end of the input.

How do we use the formal
- Lets take the example nonregular language L= EO"IV In-03

definition to describe individual
note that the CFG for L is A COALIE (V= A

,
& = 50 ,

13)

PDAs ?
-> The formal description of the PDA M2 that recognizes 1 :

let M2 be (Q
,
5

,
4

,

5
, 91

,

F) where

1
.

Q = 29
., 92

,
93

,
9

,
3,

2 . E = 50,
13 ,

3 . T = 30
,
$3

4. F = Ea
,,

9 - 3

5
. G

,
EQ is the start state

, and

I
&

S

Input : 8

E(92
,
$)3

↳
.

Sixeishonoring table
,

where blaetrnsignifyDempty
langra.a

i
2(92

, 0)3[(93
,
9)3

C · I
2(93

,

E)3 2(a
,,

3)3

S

RECALL : if a certain in put yields & (in the transition chart)
,
this means

that a state has no actions/transition arrows for that input-ala
,
if a

opy of the machine receives that input ,
ithas no further actions and dies

-> These 3 fields of the chart are what comprise the domainQX&,xTz of a PDA ;

based on the current state and the symbol currently at the top of the stack
,
this

chark tells us what will happen if each input symbol 0, 2
, 9 EEg were the

next to be read.

-> These values represent results of various inputs into S(QE, **2) to yield a set of

(Q
,
53) pairs .

andpushesthe
↑

reads an input of it remains in 9 and pushes a 0 onto the stack--

· For example ,
when M2 is in state 92 ,

the stack is currently empty and it

&.givebyOO at the top of its stack
,

and rends a i

moves to gy but does not add anything to stack--given by ECgy
,
2) 3 !

How does a PDA check to see -> The formal definition of a PDA doesn't have any explicit mechanism for the PDA to test

if the stack is empty ? for an empty stack (which
,
with example lang B

,
is something it needs to be able

to do)
.

-> To get the same effect
,

we use the stack symbol $($EN)

How is the $ symbol used ? ->
The PDA initially places the symbol on the stack - but never again after that.

-> Then
,
if it ever looks to the stack and sees the $ at the top ,

it knows that

there is nothing underneath
,
and thus the stack is effectively "empty"

Example ? -> In the Schart for M2 notice that when My is in g ,
Laka the start state !)

With an empty stack
,
it yields the more 5192

,

$)3 when it reads & from

the input.

· This is essentially describing the first transition that happens before all other transitions.

Reading a "a" from input action taken simply by default.

· The first more of My ,
as we can see

,
is to push a $ unto stack !

I
State .

How do we create a state -> Very similar to making state diagrams for NFAs ; all we have to add is a

diagram for a PDA ? feature to show how the PDA uses its stack when going
from state to

-> Theorem : every NFA can be converted to an equivalent PDA.

How is the stack represented -> Rather than just putting an input symbol on each transition arrow
,
like

in PDA state diagrams ? with NFAs ; g0gq
&

0

We write a statement of the form a
,

b Cc
,

where

b = a stack symbol that may get popped off the stack & replaced by
c = a stack symbol that may be added on top of the stack (as part of this

transition) i
.
F

.
F

. the current stack symbol is b.↑-> a = the input symbol read

39
,

E

992

"

When the machine is reading an a from input
,

it may replace the symbolb on top

of the stack with a c .

"

Example of creating a PDA ? -> To make a state diagram of My (same example as Formal defn) :

2. Draw an NFA of the machine based on its transition function table ignore the parts

about the stack
,

& draw it exactly as you would any NFA

Yo ↳
2(93

,

E)3 2(a
,,

3)3

1

S
~

98 & 9,D
E

2. Add in the a,b > statements
,
where b is the current symbol andeis

the potential replacement.

State Diagram of M1 :

0
.
5- 0

* T&

99 3
,39$9 92

1, 0 - E

904
E

,$ - 2

D2 ,
01

·What does it mean when
-a = E : signifies a transition that My makes without reading on input symbol first to trigger it.

a
,
borc are a ? (RECALL--in NFAs

,
aninputof E means that the machine automatically splits into I copies)

-> : = 3 : signifies a transition that My makes who reading & popping any symbol off the stack

-> c = d : signifies a transition that My makes by popping a symbol b off the stack
,

but not replacing
it with any symbol (nothing pushed on

I
Ea'bic" li

, j ,
K10 and i = j or i = k3

What is another ex ofaPDA ? ->
a PDA M2 which recognizes the language

How does M2 work
, informally?

- Me works by first reading and pushing all of the as-so when the as are

done
, M2 has them all on the stack so that it can match them with either

the bs or the Cs (since i = jork (

-> Next
, M2 uses nondeterminism (which is essential here) to have 2 branches-

one for each possible input of a bor a 2 .

If either of them matches
,
it accepts.

aaRz
· wo nondeterminism , it wouldn't know it advance whether to match (/push ?)

the as with the bs or the Cs .

State diagram of M2 ? ⑤ b
, 99 E

E

3A
-92 79$ 929

·

I checking
he

↳ 2 ,

39↑ Fa
,29$

ja
*

E

&

Wo

↳

W #

925,99999,

2
.
29

> 96
E

,
$9E

S 9 -

=
a

,
a sa

-
b

,
2 C

,
a sa

-
checking if i = K

What does each transition 1. using to test for empty stack ! Automatic first transition.

LS(QxE2 x2)) in
2. as long as My continues to read as

,
it pushes the a Symbol onto stack

M2 mean ?
3, 4

. My automatically creates 2 branches (which don't add anything to stack)
,
one to

account for each of the input symbols b and c

-

this "spawning" of 2 copies is known as a mode shift.

5. As long as bs are read from the input and the stack contains as
,
then an a is "popped" off of

the stack (denoted by -,
- 2) for each b read

6.
Once all of the as have been popped off the stack

,
the

remaining top symbol will be a $-

this indicates that an equivalent amount of be have been read & that currently ,
i = j .

To

act on this
,
and ONLY once the top of stack is $

,
a transition to accept state go is

automatically made (since input is "a"

7.
Now that we hars attained i = j ,

My no longer cares ab counting the of Cs read . So

it will stay in the accept state as long as it is reading as

· However
,

there is no transition arrows from g, for if an a or a
b is read-since

that would be "illegal" to the language atp.

· Thus
,
if any as or bs are read

,
the current copy of M2 would die

8. In this section
,

we want to see if the of es =* of as
,
so the be in the

middle don't rily mean anything to or effect M2 .
As long as it reads bs

,
M2 doesn't torch the stack

and remains in state 96 . Similar to E--"burning through the bs".

I
9 the whole time .

9. Additionally
,

an automatic ("modeshift") transition is created to act on the

input symbols after all be have been "burned"

10 .
Similar to 5--popping an a off the stack for each - read

,
but staying in state

"Same as
$ but for us.

12 .

Unlike the other accept statea has no self-pointing arrows
. Why ?

· B12 atthis point
,
the input has given us X of as

,
some arbitrary # ofbs

,
and exactly & * Of

-

Thus
, My remains in accept state g,

iff it doesn't read
any more symbols.

(fit does
,
there is no

arrow corresponding to them and that copy of the machine would then die !

What is an example of a PDA -> wh means w written backwards .

that recognizes the language 20201111010 , 0210,
9

,
22, 003 =L

State Diagram of My ?

↑ · My dres not want to see any more in put or else the rules won't be fulfilled & the string Won't accept.

LEww
* /w -50, 23

+ 3 + the PDA My will work by first pushing all the symbols that are read onto

the stack
How will My know when to start

-> At each point (of reading an input), My will use nondeterminism to automatically create

#
checking for the we portion of a another copy

that assumes that the middle of the string has just been reached &

string ? its time to start "Checking For" wR

· There
,

it will switch to popping a symbol off stack for each input read
,

&

checking to see if the two are the same.

-> If the input read & stack Symbol popped were always the same
,

& the stack empties
③

at the same time that the input is finished, My accepts . Otherwise , reject.

925395 > EX &

5
,
232

V

G < D%.
·
if at

any point a O is read

but the top stack symbol is
2

,
$928

NOT O
, the copy of Mythen just

dies
. This "rule/transition" only

applies t the specified

symbols of
a

,
b(-2)

between PDAs and CFGs ?

I
describing the class of all context - free languages (CFLs) .

What is the relationship
-> PDAs and CFGs are equivalent in power both are capable of

->

Any CFG can be converted into an equivalent PDA and vice versa .

-> A language is context - free ifI only if there is some PDA OR

Some CFG that describes it
.

How do
you

convert a CFC -> its sort of complicated but basically ,
the PDA(P) will work by accepting

into a PDA generating the its input (w) by determining whether there is a derivation for win

same language
? the grammar (6).

·

basically
,

P will try to derive the string w
, and determine whether

there is some series of substitutions (using the rules of 6) that can

lead from the start variable to w.

What is an "intermediate
-> In the derivation for a grammar,

each step of it yields an intermediate

string" ? ↑ string that is some combo of variables & terminals :

62 : A- 0A1/a

* -> OA1-00A11 - 000A111

Iintermediate
strings

How does nondeterminism come
-> Since for every variable on the left-hand side of a rule in 6 there can be multiple

into play in this process ? possible substitutions (RECALL : the whole reason for the"l"shorthand)
,

the PDA uses

its nondeterminism to
guess the sequence of correct substitutions for a given in put.

· At each step of the derivation
,

a branch is made for each of the rules

For a particular variable ,
and used to substitute something for it.

-

Summary : context - free languages
-

What is the relation between /- All regular languages are included in the class of CFLs !

regular languages & context

free languages ?
context-free

languages

regular
languages

-> CFGs & PDAs describe the same class of languages - CFLs
.

· For every CFG that describes a language A
,

there exists an

equivalent PDA that recognizes the same A.

is not context-free ?

I
pumping lemma !

Part 2 : Automata and Languages
Ch2 : Context- Free Languages 2. 3 : Non-context - Free Languages

How do we prove that a language
-> Similar to proving languages aren't regular ,

we use an altered version of the

-> For ex
,
take the non-context-free language

B = Ea "b" c"(n203

What is the idea behind the -> RECALL : For regular languages
: the pumping lemma says that for

any regular

pumping lemma for CFLs ? language ,
each string in that lang contains a section which can be

repeated any number of times
,

with the resulting string remaining
a correct component/element of that language .

-> For CFLs
,
the idea is similar - that

every context - free language has E

special value called the pumping length such that all longer strings in the

language can be "pumped" - but the meaning of "pumped" slightly differs.mmmmmmmmCFL can be "pumped" ? parts may be repeated any number of times
,
with the resulting string still

a member of the language.
·

as opposed to regular languages ,
where a string is divided into I parts

and the 2nd part is repeated ('pumped'

What is the formal definition

of the pumping lemma for if A is a context-free language ,
then there is a number p

LFLs ? (the pumping length) where
,

if s is any string in A of length
Isl = p ,

then s may be divided into S pieces S = uvxy2 while satisfying
the following conditions :

1. for each 110
, uv'xy"zA

basically saying that the 2nd & 4th parts can be duplicated ins

any # of times
, and the resulting modified version of s will still

be a part of lang A
.

2 . Ivy 1 > 0

says that at least one of v or y (but not necessarily both) is not

the empty string otherwise the theorem would be tririally true.

(the length ofr plus the length of
y

must be > 0

3
. (vxy) -p

says thathe pieces X
, y ,

andV together have a length of at most p.

the pumping lemma ?

I
Free

.

Example : how do we use
-> Lets prove that the language B = Sa"b"c"In203 is not context-

-> if we let "p" be the pumping length ,
we know that our chosen string's" has to

be at least p symbols long-s = abic would
satisfy this.

·
e. g . abc (p = 1)

,
aaabbbacc(p= 3)

,
gabbac

,
etc.

What do we need to prove abouts ? - That no matter how we divides into 5 pieces orxyz ,
one of the 3 conditions of the

pumping lemma will be violated.

->

Keeping condition 2 in mind-that either v or y
must be empty-there

are 2 "cases" that encapsulate all possible ways thats can be divided into orxyz :

2-
Both v and y contain only one type of alphabet symbol

forex
,

anabbba or

nabb orabaIi↑ 2.
Either v or y contains more than one type of alphabet symbol

for ex
, aabb oraa

Why do these cases contradict
1.

If v and y both contain only I type of symbol , meaning that when we pump

the p . l .? ~ and y ,
the 3rd symbol will not

get duplicated - For example,

s= aabbcc so Uvxyz = abo

I

And thus the # of the symbol not included in
vory will become much smaller than

the other 2. .

The strings won't be able to satisfy ab"c & therefore

cannot be a member of B.

This violates condition 1 and is thus a contradiction.

2. In this situation
,
it is possible to have an equal number of as, s

,
and as.

However
, not in the correct order ! For ex:

5 cabbec so uvaxyz = cababb

T
Hence it cannot be a member of B and a contradiction occurs.

I
11

What an algorithm can do .

Summary of Ch . 1 and 2

2 .

DFA
the most simple model of 3 .

NPDA nondeterministic PDAs

introduced NFAs
,

which are

2. NFA
equivalent in power to DFAs

↓
regular CFGs

expressions↑ 17

a way
to describe

-
languages

↑

Ari Kumar COMP 155-002

Due February 23
,

2020 Homework2

Page I

2. CFGs for the following languages ,
where E = a

,
b, 3

a) A = 2ab"(isj203
let grammar G = (V

,
E

,
R

,
S) where

V = ERs
,

Rz3 ,
5 = Sa

, b3
S =

RI
,

and the set of rules & is :

R
2
- 3/aR , / a Re

R
=
- Ezb/E

This grammar accurately generates language A
.

/ created it on the basis of 2 conditions :

2. no bs should appear in the string until at least one a has appeared.

· The start variable has I possible substitutions excluding the empty string 3
,

and both of them begin with

the terminal aensuring no b can appear beforehand .

2. There can be any number of as that appear before a singled ,
e . g.

I can be j + 2
,

but it doesn't have

to be
.

· One of the start variable's substitution rules
,

a By
,

allows an unlimited amount of as to
appear before a single

b
.

Additionally
,

both i ,j
can be = to O

,
so the empty string

& is given as a substitution rule of the start variable Ry
.

b) B = Ea"b*
<(i= j or i = k where i

,j ,
k203

let grammar G= (V
,
E

,
R

,
S) where

V = ERs
,
Ez

, Ry
,
Ry

,
Rs

, Ry 3,
5 = Ga

,
b

, 23
S

S =

RI
,

and the set of rules & is :

Ri+ Rz/R

R+ RzRj
Ry -> aRzb)E
R

,
+ cRj/a

Rs - aRgc/Rc

Ry + bRy/a

Ari Kumar COMP 155-002

Due February 23
,

2020 Homework2

Page 2

1 .

This grammar accurately generates language B.

I created it by breaking B into the union of

smaller CFLs and then constructing a grammar for each piece.

Language B
: Eaib"c")i = j where i

, j ,
1 = 03

A grammar to describe By is as follows (informally) :

R2- R
&

Rz

R
+ aRb/E

R
,

+ c R
, /E

Language By : Eaibic"/i = k where i
, j ,

K =03

A grammar to describe By is as follows (informally) :

R
,
+ aR

,
c /Rz

R2- bR2/E
I then combined these 2 grammars by adding a start variable to 62 which points to the start variables of the

individual grammars.

c) C =Eab" /i + j = k where i
, j ,

k = 03

let grammar G= (V
,
E

,
R

,
S) where

V = ERs
, Rz3,

S = Sa
,

b
, 23

,

S =

RI
,

and the set of rules & is :

Ry+ aR
,
c)Pz/E

R23bRzc/a

This grammar accurately generates language C
.

Since itj =k
,
we know that the appearance of each and any

asorbs in the input string must also have a corresponding c at the end of the inputstring.
To ensurethis

,
both

&
2 and R2 do not allow

any
a or b terminals to generate without a c terminal generating as well. By allows

a string with any number X of as
,

as well as X number of us
.

Then
,

there is an option to leave the string as such

(by Using R2-2) , yielding a string where j = 0 and it j = k - this string is an element of C

Alternatively
,

we can add as many be to the string as we want
,

and each step of this with also add another

c to the end such that itj always = K.

Ari Kumar COMP 155-002

Due February 23
,

2020 Homework2

Page 3

2. Give a formal description of a PDA which recognizes the language
A = Ew/w = wR3 .

Give an informal description of why your answer is correct.

let Mc = (Q ,
5

,

4
,

8
, 92

,

F)
,

where

2 . Q = 592 , 92 , 93
,

9 ,
3,

2. E = 30
,
13

3
. T = 20

,
1

, $3

4. F = E9,3
,

and

& is given by the following table
,

wherein blank entries signify P .

O 1 E-Input:

-

Tak : 0 1$n01$20d$2

92 E(9
,,
$)3

state
:

a 2(92
,
03 2(92

,

273[(93, 2)32(93 ,
933 [(9

,
9)3

En Ele!3 E(93
,
2)3 E(90

,

5)3

E
,
29$ -P

A state diagram of My : >92 ED 31

2
,
1- E

2,0 - E

2
,
23E

V

G < 900 .
02a

1
,
195

E
,
$92

Explanation :

My accurately recognizes langrage A. Me is modeled after the PDA My from example 2 . 18 (page

116
,

Ch . 2 .
2) of the textbook

,
"Into to the theory of computation" . My recognizes the language

B = EwwR/wes0
, 13*3

,

which is quite similar to language
A.

I determined that B&A ; that is
,

all strings in language B are also palindromes and are also elements

of language A.
Therefore

,
all strings accepted by My should also be accepted by My

.

The difference between A and B is that A includes binary palindromes of an odd-numbered length (where

the middle of the palindrome is a 0 or a 1
,

like 1001001)
,
while Bincludes only even-length palindromes.

Ari Kumar COMP 155-002

Due February 23
,

2020 Homework2

Page
2.

My works by using the transition S(92
,

5
,
9) - (93

,
3) to nondeterministically guess ,

at each

Step,
that the middle of the inputstring has been reached

. My then switches to popping symbols off the stack

& checking if they mater the symbols read (because if its a palindrome
,
the two will be the same) .

(see the explanation of My on page 116)

My functions in a similar manner
,
and contains the same SCqy ,

2
,
2) -> <Ey ,

2) function for the case of

an

even-length binary palindrome. However
,

to account for the possibility that the palindrome contains a 1 or

a O as its midpoint and is odd-numbered in length ,
I added the following 2 transitions :

S(92 1
2

, 2)3(93
,

9)

S(92
,

2
,
0)9 193

,

2)

These transitions are also created nondeterministically at each Step (since G is a for both) ,

and they assume that the midpoint symbol has been reached
.

If it is a I
,
the 1 is popped off the stack &

My moves to gy ,
where it begins popping symbols off the stack and

comparing
them to the input

For
symmetry.

The same occurs for the case of the top symbol being a 0.

Ari Kumar COMP 155-002

Due February 23
,

2020 Homework2

Page &

3. Informally describe a deterministic Turing Machine that recognizes
A = 201" In203 .

We can design a Turing Machine My that recognizes the language A = EOI" /n = 03
. Me Works

by zig-zagging between OS and Is on the tape and "crossing off"a I for
every

O read-

we can indicate this "crossing off" by replacing crossed of Os or Is with the symbol X.

For My
,

let E = 20
,
13 and # = [0

,
1

,
x3

.

In order to explain My better
,

I also rewrite Bas

B = 50421/nz = nz where My
,
n

> =03

M2's algorithm given an input W is as follows :

My = "On input string w:

2. If the first /leftmost symbol is a 1
, reject

- because this implies that either

a) string w contains no Os and at least one I
,

in which case w B

b) string w contains Is that precede Os
,

in which case w B

2 . Write over the first O read (which
, initially ,

should be the first symbol on the tape reless w = 9 (with the symbol

"X" in order to mark it off
.

More right across the tape until a 1 is read.

3. Write over the first I read with an "X".
.

Move left until the first O is read.

4.
Repeat Steps 2 and 3

.

If at
any point a O is read and crossed off and then no more Is are found Cake al

Is have been marked off
, meaning that n2 < N2)

, reject.

When all Is have been crossed off
,
if any symbols laka any Os) remain

, reject ; otherwise ,

accept.

The following Figure contains several non consecutive Snapshots of My's tape after it has started on in put

000111 :

-0 * I & 1 w

Z

X 08 I & I -

&
* 08 X

& 1 w

I

X0XX 1 w

I

X 0XX1 1 w

I

X0XXX 1 w

x 0 x YX1vw
....

I

XXXXX 1 w

I

XXXX X X ww ...
-

accept

What is a Turing Machine ?

I
-> A model of computation (just like DFAs

,

PDAs
,

etc.)

Part 2 : Computability Theory
Ch3 : The Church-Turing Thesis 3 .

1 Turing Machines

-> However
,

one that is much more powerful and can basically do everything that a

"real computer" (e. g. Pythons can do !

~ A much more accurate model of a general purpose computer because
,

unlike finite

automators
,

it has an unlimited & unrestricted memory.
How does a Turing Machine work,

~ the TM model uses an infinite tape as its unlimited memory

broadly ? · it has a "tape head" that can read & write symbols onto the tape,

as well as more around the tape !

How does a TM use its "tape"? Initially
,

the tape contains the entire input string and is blank everywhere else.

I if the machine wants to store info
,
it can write it on to the tape.

·
if the machine

wants to read the info it has written
,
it can more its head back

over it.
control

A abbw - 3
...↑ which point it produces an output .

N

tape

How does a tM produce its output?
- It will continue computing until it enters a designated "accept" or "reject" state

,

at

· if it never enters an accept/reject state it will go on forever
,
never halking.

How is a TM different from a -> Informally
,

a Tring Machine is just a DFA with an infinite tape !

DFA ? >

Key differences :

2.
a TM can both write on the tape AND read from it.

2.
The read-write head can more both to the left and right -

i

. e., not

limited to the top Symbol like a PDA and its stack.

3. The special states for accept& reject take effect immediately
(unlike FAs

,
where only the state at the end of an input string matters).

What is "LCM)" ? - For aturing Machine M
,

LCM) = "the
language recognized by M

"

Example to understand how
Let's

imagine a Turing Machine My for testing membership in the language

TMs work ? B = Eww/WES0
,
1313 (so like O21NO11

,
102101

,
0x0

,
etc.)

· The input is too long forMy to remember all of it
, but what it can do is more between the 2

sides of the # and check if the symbols match.

I
Mys algorithm (informally

2. Zig-zag across the tape to corresponding positions on either side of the Symbol

(w
.
r

. t
. the string w

,
e .g .

the 2nd symbol in the entire input should correspond to the

2nd symbol after the #
,
and so on

·

if they do not correspond at any point
, reject.

·

if noSymbol is found
, reject .

·

Cross off
symbols as they are checked to keep track of which↑

to check whether these positions contain the same symbol .

Symbols correspond.

2. When all symbols to the left of the have been crossed off
,
check for any

remaining symbols to the right of the
.

If
any symbols remain

, reject.

Otherwise
, accept.

How do we describe a Turing
> by giving a description of the algorithm & sketching the

way
that it functions

Machine informally ?
-> We almost never give formal descriptions of TMs because they tend to

be
very big.

What is the formal definition * Turing Machine is a 7-tuple (Q
,

E
,
T

,
8

, 90, accept

of a Turing Machine ? . Preject) Where Q
,

&
,

and & are all finite sets and

1. Q is the set of states

2 . E is the input alphabet NOT
containing

the blank

symbol -

3. It is the tape alphabet , where

·WE To <↑ contains the blank symbol
·a Call elements of E are also a part of 4)

4. f : QXT- Q x ↑ X5L
, R3 is the transition function

,

5
. g .

EQ is the start state

6. Paccept EQ is the accept state
, and

1. Creject EQ is the reject state
,

whereEaccept Creject

↳= left
->

R = right
What is the transition function

+ S : QX M >Qx * X & L
,
R3

S for a TM ?
· if a machine Tz is in a certain state g and its head is currently over

a tape square containing symbol a
,
we can represent this as G(g

,
a)

·

and if S(g
,

a) = (g ,
b

,
7)

,
then the machine moves to state 92 ,

replaces the symbol a on the tape with a b
,

and the tape head

moves to the left (2) after writing.

I
(ble it writes from left-to-right)

How does a Turing Machine -> Initially
,

a Turing Machine M receives its input W = W
,

w
.

...Whe

compute? and writes them on to the leftmost & squares of the tape

· The rest of the tape is blank-aka filled with

blank symbols ,

W.

end of the input ,
sinceJ does not contain v.

-> The head starts on the leftmost square of the tape.

What happens when M starts
+ The computation proceeds/moves according to the ruses described by the transition↑
-> The first time that a appears on the tape indicates/marks the

running
? function

· for ex
, say M starts in 90 and the leftmost square contains the symbol c

·

say that Sof M contains the following rules :

8(90
,

2) - (92
,

b
,
R)

8 (90
,
b) 9(90

,

3
,

7)

·

Since "S(Go
,

c)" corresponds to M's current situation
,

M's next

action is to enter state gy , replace the symbol c with a b
,

and

more its head to the right,
·

It continues this process for whatever state 9 ,
and tape symbol by it currently

rests on ... S(9x ,
+ x) -

What happens if M is already
-> if the tape head is already on the leftmost square and the transition

on the leftmost square ?
frection indicates L

,
the head just stays in the same place.

-> The head will never be in the "rightmost square" Since it will eventually just be blank symbols.

When does Mstoprunning ? -> For
every Turing Machine M on input w

, running
M on w results

in
exactly I of these possible outcomes :

2. As soon as lifever Menters gaccept ,
it immediately accepts

in put w

· And we say that "M halts on Wi

2.
As soon as/if ever Menters & reject ,

it immediately rejects input w

· And we say that "M halts on
W"

3.
M never halts (doesn't enter accept

or

greject (

·

And we say that "M loops on w"

·

basically
,

a TM doesn't have to change states or modify
its tape-all it has to do is keep moving around (left &

right) while everything else stays the same.

·

i. e
.,

S(9
,,

a) -> (9
,

a
,
7) is a valid transition frection.

TM works ?

I
proceeds to move around the tape and (potentially) rewrite/modify some of the

Summary (?) on how a

->

Basically
,

the TM first writes all input symbols onto its tape , and then

symbols (according to the S rules) in order to help it reach an output.

·

it does all this whilst simultaneously moving from state to state
,
and

goes on
forever or stops if it ever lands onMacceptorreject

What does Turing-recognizable > RECALL that a TM M can respond to an input W in I of 3 ways
:

mean ? ·

accepting it by reaching a gaccept state & halting operations.

· rejecting it by reaching a reject State & halting operations.
·

looping indefinetly , moving between states & tape squares but never landing

> A language A is Turing-recognizable if there exists some TM M

that recognizes it. This means that for
every string X,↑ on the accept or reject state.

X E A if M accepts X

XA if M rejects x OR if M loops on X

17
~ We then say that TM M recognizes language A "

What is a decider? A
Turing Machine that is programmed so that it never reverts to

looping on any given input -

every input string leads to either

& accept or G reject is called a decider.

What does Turing-Decidable · A language A is Turing-decidable if there exists some iM M

mean ? such that for every string X,

X &A means that M accepts X

X #A means that M rejects X

& ala
,

if there exists some decider that recognizes it !

> We then say that "TM M decides language A .

"

> All languages that are Turing-decidable are also inherently Turing-recognizable.

to each other ?

I
·

recognizing machines don't need to keep track of how many symbols

Summary : where do all types >

regular languages :

of languages fall in respect · the easiest to solve

·

can be recognized by DFAs

they've seen so far... & they can't anyways because they have a finite

number of states (limited memory
!
)
.

· EXL = Ecl w ends in a 13

· context-free languages :

·

recognizing machines are now equipped with a stack which gives them

an "infinite memory" to keep track of what they've seen.

·

EXL = [01v/n=03
,
which is nonregular

- decidable languages :

·

languages that are recognized by Turing Machines which always reject
or accept any input

,
and never loop .

·

Ex L = Ea"b""Inz03
,
which is non-context-free ·

>
recognizable languages :↑

All languages

context-free

·

languages that are recognized by Turing Machines

· Ex L = ESM , w)/ MisaTM and Maccepts w 3
,
which

is undecidable.

Turing recognizable

decidable

regular

A

s note that there are also languages
which do not fall into

any of

these categories !

What is a "variant" in this

I
-> a variant of a Turing Machine is an alternative definition of a

Part 2 : Computability Theory
Ch3 : The Church-Turing Thesis 3 . 2 : Variants of Turing Machines

context ? Turing Machine
,

a type of TM that alters one of the rules in some way

.
~ Forex

,
a Turing Machine that has multiple tapes ,

a TM that includes an

option to "stay put" (as well as more(or R)
,
or aTuring Machine that

employs nondeterminism
-

Do TM variants differ in their No ! The original TM model and all of its variants are equivalent in power ;

computing power ? that is
, they all recognize the same class of languages

= Similar to the relationship between coding languages
like Python ,

Java
,

and C some languages might provide a more efficient or intuitive way
to

complete a task
,

but all of them are ultimately equivalent in terms of

what they have the power to do .

How can we prove that a

-> To show that I
computing models are equivalent ,

we simply need to

variant isn't more powerful ? show that onecan simulate the other .

-> For ex
,

a YM that allows the ability to stay put instead of being
forced to more Lor R.

~ its transition function would look like S : Qx * - Qx* xEL
,
R

,
S3

Turing Machine ?

↑
for reading & writing

-> We know that this feature does not give the variant any more power because

we can convert any
TM with this "Stay put" to a regular TM :

·

all we have to do is replace every transition Qx * - Qx * X & With

2 transitions - one moving to the right,

and one moving back to the left
.

What is a multitape
-> like a normal TM but with several tapes - each tape with its own head

· The input is initially written onto tape I
,

while the others stay blank.

What is the transition function ->
To account/allow for reading , writing ,

and moving the heads on some or all of

for a multitape TM ? the tapes simultaneously ,
we modify 8 : QX & -> QX * X & L

,
R3 to a

new transition function S : QXM
*

- Qx ** xEL
,

R
, S3 ↑,

where K is the number of tapes. The expression

8(9
: 192

,
.... ak) = (9

;, bz bi ,
L

,
R

. . .,
h)

says that if the machine is in state 9 ;
and heads I through K are

reading symbols as through K,

then the machine moves to state 9. ,
writes symbols by through by on the

corresponding tapes ,
and moves each tape's head (starting with tape 1) left

or right or to stay put ,
as specified .

What a nondeterministic

I
-> At

any point in a computation ,
the TM may proceed according to several possibilities

Theorem :
every multitape Turing Machine has an equivalent single-tape

(regular) Trying Machine
.

is

-> The transition function is 8 : Q x * >P(QX ↑ XSL
, R3)

s Theorem :
every nondeterministic Turing Machine has an equivalent single-tape

(regular) Trying Machine
.

Turing Machine ?

↑
(normal defn of nondeterminism that we've seen so far)

I
· Recipes

,
procedures these are everyday use algorithms

Part 2 : Computability Theory
Ch3 : The Church-Turing Thesis 3.3 : The Definition of Algorithm
What does "algorithm" mean ? -> Informally speaking ,

an algorithm is just a collection of simple instructions

for carrying out some task.

what is a polynomial ?
-> The understanding of what an algorithm is was

,
for a long time

, just informal ; an

intuitive understanding.

What is a root ?
~

a sum of terms
,

where each term is a product of certain variables and a

Coefficient (a constant) .

~ A root of a polynomial is an assignment of values to each of its variables

such that the equation = 0 .

· for ex
,

a root of 6x*ye + 3xy2 -x*
- 10 is x = 3

, y = 3
,

z = 0

↑
An integral root is one where all the variable values are integers (like above

Why do we need a formal ~ As we know ,
the basis of this class is the "limits of Using algorithms to solve problems"

definition of an 'algorithm ? ~ So
,

some problems/tasks do not have any algorithm that solves them.

Brief review :

↑ ->Proving that an algorithm does not exist requires having a clear definition of algorithm.

·For ex
,
there is no algorithm that can test and determine whether a

polynomial has an integral root
.

What is the Church- ->
The first formal definition of an algorithm !

Turing this is ? -> 1936 : Alonzo Church used a notational system called X-calculus to define

algorithms ,
and Alan Turing did it with his machines.

· the 2 definitions were shown to be equivalent .

->
Intuitive

Turing Machine
notion of equals
algorithms Algorithms !!

So what does it mean to -> The formalization of an algorithm says that solving a yes/no problem P is

solve a problem ? equivalent to designing a Turing Machine M that decides a language
*

,
where A is essentially a set of strings that consists of all the "yes"

instances of the problem-all the possibilities that result in the ans being yes
· A = EwI

w is a "yes" instances

· RECALL : "decides" = always an accept or reject output; no looping .

I
such that w = 0 has an integer solution . We can write this as

problem' into T
. M .

terms ? that can test& determine whether a polynomial has an integral root?

~ Ideally ,
this algorithm should return the set of polynomials w

language D = Ew w is a polynomial with an integral root ?

How do we put a 'yes/no

↑
-> Lets go back to the example with polynomials

- is there an algorithm

·
our alphabet for D would look like & = 20 ,

1
,
... 9

,
+ 5 ,

4
,yet . 3

~ It was proven that D is not a Turing-Decidable language , though it

is recognizable.

> 6xyz2 + bxy2-X-10 would be an example of an accepted string
by

M .
Example of a problem that

-> For polynomials with only one variable
,

like Nx3-2x2 + X -7. We

is decidable ?
can let language Dz

= Ep 1 p is a polynomial over X with an integral roots

-> A TM My that decides Dy :

M2 = "On input < p) : Where p is a polynomial over the variable X.

2. Evaluate p with the vals of x set successively to 0
,

2, 1
,
2

,

-2,

3 - 3,
If at any point the polynomial evaluates to 0

,

accept.

2. If the roots of
p do not lie within the bounds ofK

where K = # of terms in p ; Cmax is the coefficient w/ largest absolute

value
,

"

cy is the coefficient of the highest order term-reject.

What world a im that recognizes
· similar to the TM M2 ,

but only with component 1
,
which defines the conditions

D be? to enter a accept

· However
,

there is no way to calculate bounds to enter d reject .
Thus

,
M is

merely recognizable.

I
·

a graph is connected if every mode can be reached from every other

What is another example of -> An algorithm Jaka a Turing Machine !) that determines whether a given

a problem that is decidable ? undirected graph is connected.

· RECALL Comp 210 : an undirected graph is one with no arrows indicating

mode by traveling along the edges of the path. Basically that the

~ hole graph is "one piece"

o %

What would be the algorithm that - First
,
lets rephrase the problem as a language A

, consisting of all strings

solves it ? representing undirected graphs that are connected :

as a

string ? ↑
direction

connected disconnected

* = EXCL I G is a connected undirected graphs
How would a graph be encoded

UNFINISHED

Ch U : Decidability

I
4. I Decidable Languages

Part 2 : Computability Theory

What are some decidable ~ Algorithms that test aspects of the automations that recognize regular

problems that concern regular languages - namely
,

DFAs and NFAs .

languages ? -> Furex
, testing whether a finite automation accepts a string ,

whether the language
· f a given finite automaton is empty ,

or testing whether 2 FAs are equivalent.

~
All of these problems are decidable - there is an algorithm that solves them.

How can we represent such Like discussed before : by representing them as languages ,
where the

problems' in TM terminology ? string input/input alphabet basically provide some way to represent/define a specific

DFA (or NFA) and its properties using a string of symbols

·

the specifics of how the deciding TMs alphabet might look aren't really

important ble we aren't formally defining it anyway

Example of a decidable problem?
- The acceptance problem : testing whether a particular DFA accepts a given

string.

-> We can express this problem as a language ADFA

*
Dra

= E(B
,
w) / B is a DFA that accepts input string wa↑

existence) together with each of the strings that they accept.

What does the language
- each element of ADFA is an encoding of

a DFA together with a string it accepts.

set Adracontain ? -
So Apea is basically a giant language that contains the encodings of all DFAs (in

->

By expressing a computational problem as a language ,
we can more easily

prove whether or not it is decidable we just have to determine whether there

exists a TM that decides the language.

·

testing whether a DFAB accepts a language w =

testing whether <B
,
w) is a member of the language Apr

What is a T. M . that decides -> AT
.
M

.
M = "On input <B

,
w)

,
where B is a DFA and Wis a string :

Adfn ? 2. If the input is not in the form of "DFA
,
then string" ; reject

2. Simulate B running on input w

3.
If the simulation ends with B in an accept state ; accept.

12

else reject.

-> Theorem : Apfa is decidable .

What about the "acceptance test" > Since we already have proved that any NFA N can be converted into an equivalent DFAD ,

problem for WFAs ? it follows that the language Anfa is also decidable

·

theTh that decides it just contains one extrasked where it converts the NFA

it receives as input into an equivalent DFA.

· the rest of the steps are identical to those of TMM which decides ADFA
.

For
regular expressions ?

I
converted into an equivalent NFAN .

What about the 'acceptance test' Same idea
,

Since we have also already proven that any regular expression R can be

< Theorem : A nea and Arey are decidable languages.

What is theemptiness testing' a for the language of a finite automation
,
it is theproblem of determining whether

problem ? or not a finite automaton accepts any strings at all .

EDFa = &(A) /A is a DFA and LLA) = P3

> Theorem : Edra Land thus Enfa
,
Erex) are decidable.

What is the TM that decides (If we simply do the reverse of the previous TM's strategy (which decided ApFr] by

Edfa ? running the DFA on the given inputstring and "reject if A accepts string ,
else accept"↑

· We can write this problem as a language Eofn :

it will not work

·

When a given DFA that actually is a member of the language Jaka a DFA which

does not accept any string) is run by the TM
,

we expect the M to accept it.

·

However
,

Since A won't accept any string ,
the TM won't be able to automatically

decide to accept it ; instead
,

the TM will loop on A-which isn't what we

want

Alternative TMdesign? Instead
,

we can designa Th <M2) that tests A without having to refer to any

in put string.

· A DFA accepts some string iff it is possible to reach an accept state from the

Start State by traveling along the arrows of the DFA

Jaka that there exists a

pathway
- e . g. a sequence of transitions/states - From

the start state to an accept state.

·

to test this condition
,
My can begin by "marking" the start stake & then

considering all possible pathways that can emerge from it. If none of them

result in the accept state ; reject.

How do we write this My idea
-

Mz = "On input <AS
,

where A is a DFA :

into an (informal) description ? 1. Mark the start state of A.

2. Repeat the following until no new state gets marked :

3. Mark
any state that has a transition arrow pointing at it from a state

that is already marked.

4. Once every state that could be marked has been :

· if no accept state is marked
, accept

·

else
, reject

I
> RECALL : CFLs are generated by context - free grammars as well as PDAs (which

- Decidable problems for context-free languages

are basically NFAs with a stack) .

How do we express the 'acceptance -> A
Cro

= E(6
,
w) / G is a CFO that generates string w?

problem' for CFOs as a language? Theorem : Acfy is decidable.

What is the TM that decides -> RECALL : When a grammar G is in Chomsky Normal Form
, any derivation

Acro ? of a given input string w has exactly In-1 steps ,
where n = the length of we

~ TM S for Acto : S = "On input (0
,
w) where Gisa CFG and wa string :

2. Convert G to an equivalent grammar in Chomsky Normal Form
.

·

except if n = 0
,
then list all derivations with 1 step.↑ 2. List all derivations with 2n-1 steps

3. If
any of these derivations generate W

, accept .
If not

, reject.

How do we prove the statement "This is a theorem that we can prove to be true by designing a Turing Machine

"Every context-free language is that answers (aka"decides") it !

decidable" ? ->
What we need : a TM that tests whether a given language A is decidable.

· Our TMS from above example can be used on any CFG to determine whether or

not it accepts a certain string
.

·We can use this TM in our new TM to test every input for a given CFL

What is the TM that decides ~ Let 6 be aCFG for A
.

To design a ↑M My that decides A
,
we build a copy

a LFL A ? of 6 into Mo like this :

My = "On input wi

1. Run TMS on input <6 ,
w)

2. If this machine accepts
,
accept .

If it rejects ,reject .

Ch U : Decidability

I
N . 2 : Undecidability -

Part 2 : Computability Theory

What does it mean for a problems A problem for which we cannot devise an algorithm to consistently solve it.

to be alogrithmically unsolvable ?
-

A .K . a
., a language which is notTuring-decidable !

> There are problems that not even the full power of Turing machines,

Python etc . can solve.

· When we take "solve" to mean decidable meaning that looping isn't

an option .

-> Even if we took "solve" to mean Turing-recognizable ,
there are still

unsolvable problems.
What is an example of an > The problem of determining whether a Turing Machine accepts a given input string

A im = E < M
,
w) / M is a T. M . and Maccepts w3

unsolvable problem ?

TM

↑ ·

a . K . a
. the "acceptance problem" for TMs

,
described by

"There is no algorithm
- ala no Turing Machine -

that can take in a Tich
,

and an inputstring,

and accurately ,dimly tell you whether the string will be accepted or rejected .

> Recall that we have already determined the acceptance problem for DFAs
,
CFG ,

NFAs
,

and regular expressions (Acro
,
Adra

, Anfa , Arex) to be solvable.

Is Aim Turing recognizable? Yes ! Recognizers are more powerful than deciders because the TMs are not required

↓ o half Laka choose "accept" or "reject") on all inputs ; they are allowed to loop .

· that requirement restricks the kind of languages that atm can recognize.

What is a M that recognizes A ? U = "On input < M
,
w)

,
where M is a TM and w is a string

:

1. Simulate M on input W .

2. If M ever enters its accept state , accept
,

If it ever enters its reject
state

, reject .

~ the TM V isn't a decider of Arm because it doesn't hall on every input
- if

M loops on w
,
then U will loop on input < M

,
w) .

&

language Aim is undecidable?

I
is decidable and there exists a TM H which decides Arm

How can we prove that the -> For contradiction
,
let's assume that Atm= ESM,

w > / M is a TM and Maccepts was

-Definition of H : H(< M
,

w >) = Ehalk and accept if M accepts w

halt and reject if M does not accept w

For a
machine

*

string
-> Now lets define a new Turing Machine D

. D's algorithm does the following :

&<xanoxea
· D takes in a Turing Machine M as an input.

· It then calls the TM for Armo H in order to determine what Mortputs

when its input string is its own description ,
denoted < M>.

-> aka
,

D calls H on in put < M
,

<M3)

·

Finally it outputs the opposite ofIt's output .

-> A more formal description of D:

D = "On input <M)
,
where M is a TM :

1. Run H on input <M
,
< M > >

&

↑ 2.
Output the opposite of whatH outputs from this input . That is,

if H accepts , reject .
IfH rejects ,

accept.

"

->

Basically , the language thatD recognizes consists of all Turing Machines

lobviously given in their string description' form) which reject themselves.

· Because D only accepts an input T
.M .

<M> if H rejects input < M , < M > >

AndH only rejects<M
,

<m >> if Mrejects when its run on input SML

"Now we must ask the key question : What happens when we run D

with its own description ,
<D)

,
as its input ? Does D accept <DS ?

Does D accept <D) ? -> No ! Consider the Following cases.

Case I D does accept < D) .

· if D accepts the input <D)
,

then working backwards from D's description

above
,
this means that H has rejected its input ,

which is <D
,
<D3)·

This then implies that when D is run on input <D) ,
D rejects < DX-

which is a direct contradiction of the case itself !

Case 2 D does not accept (aka rejects) <D

·

D only rejects its input if Haccepts its input <D
,
<DX)

· H only accepts

its input if D accepts when run on input < D > -

again ,
a direct contradiction !

-> We can summarize D's behavior on input <D) as Follows :

& (< D >) = accept if D rejects/does not accept < D>E reject if D accepts < D).

-> No matter whatA does
,

it is forced to do the opposite ,
which is obviously

a contradiction. Therefore
, neither TMD nor TM H can exist.

I
· A is Turing-recognizable , and

·

the complement of A
,

A
,
is also Turing-recognizable

What is the PROOF ? -> There are 2 directions to prove
-

2. if we assume a language A is decidable
, prove that both A and A

are recognizable.

What is Theorem 8
. 22 ?

↑
-A language A is decidable if and only if

2. if we assume a language A as well as its complementA are both Turing
-

recognizable , prove that A is decidable.

Proof for direction 1 ? -> Let M be a TM that decides A
...

M also recognizes A
,

inherently.

-> We can
prove that A-aka the set of all strings which are not in A - is

also Turing-recognizable : all we need is a TM M2 which incorporates M

and outputs the opposite of M on in put A !

· This is the same idea behind the proof that the complement of a decidable

language is also decidable e.

Proof for direction 2 ? ~ if both A and A are Turing-recognizable , let My and My be the recognizing
TMs For A and A

, respectively.
->

We can then prove that A is decidable by devising a TM M which decides it :

M = "On input wi

1. Run both My and M2 on input win parallel .

Cak a take turns simulating I step of each machine in turn)

2. If My accepts ; accept . If M2 accepts ; reject .

How do we know that this TMMs
Every single string Wis either in A or A

,
which means that one of the

actually decides A ? 2 machines (My and M2) will always reach an accept state when given w

->
And because M halts Whenever My or Me accepts

,
it follows that M always

halts- and so it is a decider.

What fact is proven by > Corollary : the complement language of Atm ,
Arm ,

is notTuring-recognizable.
Theorem 1

.
22?

I
accepts the languages (LA) ULLB)

-

Class Notes : CFGs , set notation

s Given LFGS A and B
,

we can construct a CFG which

but not necessarily (LCA) MLLB)
,

or LLA)

Why not (LCA) &LLB)) ? - It isn't garanteed to be a context - free language ! For ex ;

lex (LA) = Garbick/i = j and i
, j ,

k = 03

let LLB) = Ea"b"c"/j = k and i
, j ,

K = 03

c = Sab" /iz03,
Which is not context free !

Why not LCA) ? ->

Again, not garanteed to be context free
-↑

-> the union of these languages would be languageC,

-> because of the set notation rule SNT = JVF

·Since we're proven that "SMT" isn't possible,
,

SuF is also not possible.

Ch5 : Reducibility

I
S . 1 : Undecidable Problems from Language Theory

Part 2 : Computability Theory

What is reducibility ?
-> The primary method we use to prove that problems are computationally

unsolvable.

-> To
prove that a problem is redecidable : show that some other problem

What is a reduction ? -> A way of
converting one problem A into another problem B in such a way

that the solution to the second problem (B) can be used to solve the

first problem (A).

-> NOTATION : "A is reducible to /reduces to B" AI B
~ Real life EX of a "reducibility" :

· The problem of finding your way
around a city can be reduced to the

How do we use reducibility in

↑
already known to be undecidable ,

reduces to it.

problem of obtaining a
map of the city

·

The problem traveling from NY to LAC the problem of
buying a place

ticket from NY to LA -> the problem of earning money
for the ticket

-> the problem of finding a job.

Why is reducibility important
?

- >

plays an important role in both computability and complexity theory (later).

-> In complexity theory - When A is reducible to B
, solving

A cannot be harder than solving B.

-> In computability theory - important for classifying problems by their decidability.

->

if A is reducible to B
,
and B is decidable... then A is also decidable !

computability theory ? -> if A is undecidable and A is reducible to B... then B is also undecidable.

&
(the key to proving that various problems are undecidable

!)

What is the "halking problem" ? -> the problem of determining whether a T.M . halts <by accepting or rejecting) on a given insert.

->
Can be described by the language

HALT-m = ECM
,
w)/ M is a T

. M . and Mhalts on input w
.
3

Is HALT-m decidable ? -> No ! We can use the already proven undecidability of Arm CRECALL ch . 1 . 2) to

prove the halting problems undecidability by reducing A+m to MALTm

What is the idea behind this - Proof by contradiction : lets assume that we have a T.
M

.
R which

proof ? decides HALTim

·

We can use this assumption to show that Arm is reducible to

HALTiM
, by using R to solve Aim

·

showing that Arm - HALTim would then imply/assert that Aim

is also decidable

· However
,

we already know that this isn't true (Theorem 8 . 11) & thus

a contradiction .

How do we use R (which

I
-> Review : the job of a T

.
M .

S which decides Arm is to

decides HAVTM) to 2. take in an input of <M
,
w)

"solve" Aim ? 2. output accept if M accepts W

3.
output reject if M rejects OR loops on W.

-> We can use R to test whether M even halfs on w in the First place-

meaning that the output of S depends solely on the garvanteed output

of M on w

· or if M just loops , in which caseS can immediately reject because

<M
,
w) would not be in Aim

What is the finalized ·
Lets assume for the purpose of obtaining a contradiction that T

.
M .

R decides

PROOF for thm
.

"

HALTIM HALT+m .

We construct TM S to decide Aim , operating as Follows :

is undecidable" ? S = "On input < M
,
w)

,
an encoding of a TM M and a string Wi

2. Run TMR on input <M
,
w >

↳
if R rejects , reject .↑

undecidable .

3
if R accepts ,

simulate M on w until it halts.

↑
if M has accepted

, accept . If M has rejected , reject .

"

-> clearly, Aim is reducible to HALT-m because if R decides HALT-m then

S decides Arm .
Because Aim is proven undecidable

, HALTim also must be

What is another problem whose the "emptiness testing" problem for a Turing Machine the problem of determining

undecidability can be proven Whether or not a particular TM accepts any strings at all.

by reduction ? We can denote this problem as language
Eim = E < M > / M is a TM and L2m) = $3

· L(M) = 0 : the lang that M
recognizes is equal to "D"

,
aka the empty language.

How do we construct the proof ?
-> Similar to the HALTTm proof, let's contradict and assume that there does exist a

TM R which decides Eim . M works like this Crough description) :

· R accepts a TM M is M rejects every single possible input string-meaning
its language contains nothing (((m) = 0)

· R rejects M if ct any point it accepts some/ any string .

-> Goal : to use R to construct a TMS which decides Aim.

How can we use R to helpsolve Arm? - When S is given an input <M
,
w) (MisaTM

,
W is a string) ,

we first have

it construct another TM My using
M and W.

How does My work ? -> M2 = "On input X :

2. If X FW (Withe string initially inputted to 5)
, reject .

2. If X = w
, run the og machine , M

, on input w .
If M accepts w

, accept .

"

I
-> We bake M

,
and we modify it such that it rejects every string

Explanation : How does > Basically , say that M is a TM which does accept some language
M2 work ? set of strings (M is not empty

(including strings that it might usually accept) except for the

Stringw--this is our TM M2

~ But when My does read the input w
,

instead of rejecting ,
it then

runs the o .g . TM Mon input w
,
and then outputs "accept" iff M accepts

-> Consider the Following cases :

Case I M accepts a language A and we A

· M2 then becomes a TM that rejects every string X (in A and otherwise)

but accepts x when X = W.

· L (M1) = EW3 ; My is nonempty↑ W -

·

So,
, running R on M2 outputs reject.

Case 2 M accepts a language A and w A

· My then becomes a TM that rejects every string x (in A and otherwise),

and also rejects x When x = w.

·

a
. K

.
a

.,
My accepts no strings and its language is empty !

· So
, running

R on My Outputs accept.

What is the final Proof We assume by contradiction that TM & decides E-m and construct

for "E-m is not decidable" ?
TM S which decides A

+ m

= E <M
,
w) / TM M accepts input w3 as Follows :

S = "On input <M
,
w) :

1. Use the description of M and w to construct a TM My as described Compres.

page)
2. Run R On input < M2)

3.
If R accepts

, reject .
If R rejects , accept .

-> If R were a decider for Erm
,

S would be a decider for Aim .

A decider for

*
im

cannot exist
,

so we know that Erm must be undecidable.

How can we
prove that EQim >EQim represents the problem of testing Whether 2TMs are equivalent.

Let

is undecidable ? EQ
+ m

= E < M2
,
M2)/ My and M2 are TMs and L(M2) = L(M2)3

· So Far
,

we have been proving that languages HALTim , Erm are undecidable by

showing that Aim reduces to each of them. To prove EQum undecidable
, lets instead

show that Erm reduces to it... ala Em - EQim.

> Proof by contradiction : lets assume that EQ+m is decidable by a TM R
,
and use

this TM to construct a TM S which decides Em
.

(continued)

I
S = "On input LM)

,
where M is a T .

M ..

is undecidable ? this TM to construct a TM S which decides E-m . *

1. Run R on input <M
, M2)

,
where "My" = a TM that rejects all in puts

Laka
, L(M2) = D)

How can we
prove that EQim

↑
> Proof by contradiction : lets assume that EQim is decidable by a TM R

,
and use

2-
R accepts

,
accept .

If R rejects, reject .

"

&

If confused by the logic behind TMS
,

see notes pg .

79

- if R decides EQ
+ m ,

then S decides E-m
.

But since Em is undecidable by
Theorem 5 .

2
, EQim also must be undecidable.

What is Rice's Theorem ? = States that any language of the form

&< m > /MisaTM and LCm) satisfies P3
,
where p = some (nontrivial

property about languages,

is undecidable.

< For ex
, Erm (determining whether L(m) = P)

- Examples : testing Whether LCM) is a CFL
,

a decidable language ,
or even a finite

language.

Ari Kumar COMP 155-002

Due March 8
,
2020 Homework 3

Page I

2. Let M be a TM that loops indefinetly on all inputs. No matter what string wit is run on
,

M will

loop indefinetly .

· From this description
,

we can conclude that M is not a decider. To be a decider
,

a Turing Machine

must never loop on any given in put every input must result in theTM halting on an accept or reject
State .

· The language of M
,

which loops on all inputs & never accepts
,

is then the empty language : <(M) = ↑

· L(M) is a decidable language. We can easily prove this by describing a TM M2 which decides LCMS :

My = "On input wi

2. reject .

"

·

M2 is simply a TM that rejects all in puts. We know that My is a decider because it never loops ,
and halts

on every input . The language of M2 is also $
,
aka ((M) .

Therefore
, L(M) is decidable.

2.

a) If A is decidable , then A is decidable. True

· If A is decidable , then there exists a TM M which decides it that is
,

on every given input w ,
M definitively

tells us whether or not w is an element of A
.

We know that the languageA consists of all strings which

are not an element of A
.

To prove that A is decidable
,

we can construct a TM My that incorporates M:

My = "On input wi

2. Run M on input w .
If Maccepts , reject .

If M rejects , accept .

"

·

SinceM never loops ,
M2 will never loop either & therefore decides #

b) if A is Turing-Recognizable ,
then A is Turing-recognizable. False

· The above statement is only true if A is also decidable. If A is Turing-recognizable but not decidable
,

then A is +

not guaranteed to be recognizablee.

· Theorem 1 . 22 (Sipser ,
Ch0 . 2 pg . 209) states - and proves

- that a language is decidable iff both it and

its complement are Turing-recognizable.

·

We have proven in class (& in the textbook) that Arm is Turing-recognizable. If Aim were also Turing-recognizable,

then (according to Thm U . 22)
,
it would mean that Arm is decidable but we have already proven (in class) that Arm

is not decidable . Therefore
,
the complement of the recognizable lang . Arm , Arm ,

is not recognizable .

So the statement is

False
.

Ari Kumar COMP 155-002

Due March 8
,
2020 Homework 3

Page 2

c) For
any language A

,

* EmA .

False

· This is false because Arm cannot reduce to its complement. If Atm Am ,
thenm

via the same mapping reduction.

·We know that if a language A & B and B is Turing-recognizable ,
then A is also Turing recognizable

(Theorem 5
.
28

, Sipser Ch 5 .
31*

·

if Atm & Aim, then it would imply that Arm is Turing-recognizable (since Aim is recognizable
However

,
we already know/ have proven thatAim is not recognizable (Theorem 1

. 22
, Sipserch 1

. 2).

Therefore
, Arm is not reducible to its complement.

d) If A is decidable and BEA
,

then B is decidable.
False

· This statement is False and can be provin false via a simple contradicting example .

LetB be any undecidable language-

for example the language HALTim discussed in class .

then B = <M
,
w > / M is a T

.
M . and Mhalts on w3 .

·

Let A = 2%, the set of all strings over S
.

We know that B > A because the language B consists of

the elements <M
,
W)

.
Wis astring input , so all possible strings we &" M is also a string input-namely ,

a

string encoding of a Turing Machine M
.

So all of the elements in language Bare also in A ; BPA.

· We know that the set &" is decidable because there exists an algorithm which decides it ala
,

one which can

determine whether a given input is a member of E ATM which takes a string w & "accepts" if we &" Cor "rejects"
if w[*) is a decider because its output will always be "accept"

,
since the language

& contains every

string. So A = E is decidable.

· A is decidable , and BEA
.
Bis undecidable

. Therefore this statement is false
.

& The proof for this therrem was not explicitly described in class
,
but Dr .Sun explained that it is almost identical to

the proof for the claim "if A is undecidable
,

then B is undecidable " " which he did present (lecture from 316) .

For that reason
,

I didn't think it was necessary to prove the claim myself.

https://courses.engr.illinois.edu/cs373/fa2013/Lectures/lec26.pdf

Ari Kumar COMP 155-002

Due March 8
,
2020 Homework 3

Page 3

e) If A is decidable
,
then A* is decidable. True

·

Given a TM M that decides A
,

we can construct a TM My that decides At which world basically work like this

(informal description) :

My = "On input wi

2. if w = E
,

accept

nondeterministically split the string w into every possible set of substrings alla
, every single way to

3

"partition" w into separate pieces.

For each set of substrings &We
,
W

.... wh3 : run M
on all of the strings in the set. If M accepts

&

every string in a set
, accept.

If M never accepts after repeating step & on every set of substrings, reject .

"

· Resource Used : "Closure Properties" notes from Univ
. of Illinois :

3
. Prove that the language E = EXA ,

BC IA and BareDFAs and LLA) ULLBS #03

is decidable
.

To
prove thatE is decidable

,
we can construct a TM M which decides it. Specifically , on a given input <A

,
B,

aka an encoding of DFAs A and B
,

M should determine whether at least one of the languages ((A) or <(B)

is nonempty . If so
,

it should accept .
If both languages are empty ,

M should reject.

To construct M
,

we can use a TM D which decides the language
EDEA = &(A) 1 A is a DFA and L(A) = 03 ,

which has already been proven to be decidable (Sipser Ch1 . 1
,

Theorem & .
1)

.

M runs as follows :

M = "On input <A
,
B)

,
where A and Bare DFAS :

1. Run TM D on input <A)
.

2. IfD rejects , accept

3.
If Daccepts

,

runD on in put (B)
.

4. If D rejects ,
accept . If D accepts

, reject .

"

Explanation :

We know that M is a decider of E because its output is dependent on the output of D
,

and we know

know thatD will never loop because EDFA is a decidable language. In other words
,

M is a reduction of

D (M&D) and we know that the reduction of a decidable language is always decidable.

-

Ari Kumar COMP 155-002

Due March 8
,
2020 Homework 3

Page y

4. Let E = 50,
13 and let A be any decidable language with alphabet &

.
Prove that AEmB where B = 200

,
113.

We know that for languages (and C2
,

if CC and C2 is decidable
,
then Cy is also decidable

(proven in class)
.

Since we already know that A is decidable
,

B must also be decidable (if it is true that AAB).

All that we have to prove is that A is
mapping

- reducible to B by providing a computable function of that

takesun input X (X is a string from alphabet &) and returns an output string #(x) such that

X tA if . f
.

f(x) t B .

Let R be a TM that decides A .

The following machine F computes a reduction F:

F = "On input x where X is a string of alphabet [:

2. Run R on in put X
.

2. If R accepts
, output 00

3. If R rejects , output 2 .

"

· This reduction proves that AEB because we can use function Oto mapelements of A to elements of B .

Ch5 : Reducibility

I
:Mapping Reducibility

Part 2 : Computability Theory

What is
mapping One way to formalize the notion of reducibility (reducing one problem to

reducibility ? another) ... e . g.
"A is reducible to B "

> There are several ways to formalize this notion ; mapping reducibility is one

'type' of reducibility .

- if A Em B
, it implies inherently that AEB

... mapping reducibility

the alphabet as its input ,
& outputs some string as well) is a computable function

What is a computable function ?

↑ is
aspecialrefined case ofgeneral reducibilitabet

,
so takes a string from

if there exists a TM M such that for every input w
,

M(w) ends with/halts

with just f(w) on its tape .

· M (w) = "running M ou string w"

-> it basically means that there is a TM which can computef--that , given
an input w

,
its final output on the tape is F(w).

How does a TM compute a function? -> Unlike when using a TM to solve a language,
a Th M For a function does not halt on

an "accept" or "reject" state (to then return its output (

-> Instead
,

it computes by starting with the input to the function on the tape ,
and

halting with the "answer" : the output of the function on the tape.

Example of a computable frection ? -> All usual arithmetic operations on integers are computable functions! For example,

the operation man
.

· We can create a TM that takes < m
,
n) as its input and returns min !

What does it mean for a -> DEFN :

language to be "mapping- Language A is mapping reducible to language B
,

denoted

reducible" ? *B
,

if there exists a computable function:
such that for every string w,

wEA) > f(w) -B

· ala "For every string w
,

w is an element of A if and only if

F(W) is an element of B .

"

·The function f is then called the reduction from A to B.

What is a diagram representation [
*

of functionf reducing A
A & B

to B ? ⑮
3

&

&

⑮ A

*F should bring elements of A into B
,

and bring non-elements of A "not into" B .

What is the point of a mapping
~ A

mapping reduction of A to provides a way to convert questions about membership

reduction ?
testing in A

,
to membership testing in B.

-> If one problem is mapping reducible to another
, previously solved problem

,
we can

then obtain a solution to the og problem !

a mapping reducibility is sort of a translation : a way to translate any string
S. t .

If the og string is in A
,
then performing the function produces a translation which

is in B .

· And if the og string is not in A
,
the translation should not be an element of B

.

How do you use mapping reduction -For AB : to test whether we A
,

we use the reduction f to map who

to test membership ? f(w)
,
and then test whether we B.

What is a simple example of Let A = EW/W Starts With a 03 and let B = W/w starts with a 13

proving a mapping reducibility ?
-> To show that AEm B

,
we need to define a function whose input and output

is a string ,
and where inputs from A must output elements of B

,
and inputs not in A

must output elements not in B.

- solution Reduction F(x) :

· if x =& lempty string) : return & Cor anything else not in B)

·

y [I] = 2 - X2I] the first character/digit in string y should be equal to

& minus the 1st char/digit in string X

(basically "flips" the Is digit of X ; if its O it becomes I & viceversal

·

return Y

-> Proof : need to prove both directions
.

10 "If XEA
,
then F(x)EB"

·

X Starts with a O
,

So by F(x)
, y will start with a 1

.
Thus f(x) EB

28
"if X A

,
then F(x) #B

"

· if X doesn't start with a O
, y will not start with a 1

. Thus f(x) #B

of reducibility as a whole ?

I
~ DEFN : if A is reducible to B then

, given a decider TM for B
,

we can design/

RECAP : How does mapping
· We have

,
at this point

,

2 definitions of reducibility :

reducibility fit into the idea 1. General reducibility, e . g.
AB

create a decider TM For A.

· a . K . a
., if B is decidable and AEB

,
A is also decidable.

· if A is undecidable
, then B is also undecidable

.

· EXAMPLES (recall proofs from Ch . 5
.2) :

·

Aim = HALTIM · E
+m

= EQ
+ m

· A
+
mEE +m

·

RECALL ATmE HALTTm : W HALTim ,there is no way
to make a decidable TM

for Arm because it would be at risk of looping on any given input <M
,
w)

with access to a decider for HALT
+m ,

we can avoid this issue by plugging <M
,
w>

into HALTim's decider to figure out whether M will half at all.

> SIGNIFICANCE : The typical strategy for proving some language is undecidable

is to show that Aim reduces to it (via a contradiction proof like in the examples

inch. S
.
2)

,
since we already know that Arm is undecidable.

2. Mapping reducibility ,
e . g.

A EmB

· DEFN : A is mapping reducible to B if there exists a computable Function S
.

t.↑
·

if A is notTuring-recognizable ,
Bis notTuring recognizable

V stringw ,
weA()f(w) EB

> IMPLICATIONS : when A Em B,

·

if B is decidable
,
then A is decidable (Theorem 5

. 22)

·if A is undecidable
,

B is undecidable

> SIGNIFICANCE : If we want to make an even stronger statement and prove that some

language X is not even Turing-recognizable ,
the strategy is to show that the

language Arm is mapping reducible to it (e . g. Arm EnX) ,
because

we already know/ have proven
that Arm isn't recognizable.

What is the proof for theorem
· Thm : if AEmB and B is decidable

,
then A is decidable.

3
. 22 ? · LetM be the decider for B

,
and F be the reduction from A to B . We can

construct a TMN which decides A as follows :

N = "On input wi

2. Compute FLw)

2
Run M

on input FLW) and output whatever M outputs.

explanation ? > Case 1 We
, meaning we want We accept : Step I will produce a string few) which

is EB
,
so M will acceptitand N will output whatever Mdoes- ala N will accept !

> Case 2 WA
, meaning we want Na reject : Step 1 produces a string #B ; M rejets ; N rejects !

another ?

I
: Then

,
we need to construct a decider TMS For A

. We do this by filling in /

How do we prove that a language -> To show that a language A EB,
we start by assoming that we have a decider

is mapping reducible to TM R fur B
.

"completing" this specific template for S's definition :

Decider S for A on input X :

This is the part that we need to complete !
1. Compute y

= F(x)

2- Run TM R on y and return its output .

function (fax) itself a
.
K

.
a

.,
the details of the translation of elements

From A to elements in B.↑ ~ The part of this "template" that we have to specify is thedetails of the reduction

What is another example of > RECALL : In ch S . 1
,

we used a "general" reduction from Aim to prove that

a mapping reducibility ? HALTim is redecidable (that Arm = HALTim)
~ We can also demonstrate that Arm Em HArTim ! To do this

,
we must

present a computable functionf that takes input of the form <M
,
W) Ca .k .a

.,
the

Format of elements of Arm)
,
and returns output of the form < M, w')

, such that :

< M
,
w) Aim if and only if <M'

,
w'S E HALTIM

How do we create a function I RECALL :

to satisfy this condition ?
· an input < M

,
w) is Aim if the TM M accepts string W.

· < M
, w) Arm if the im M either rejects or loops on w.

·
an input <M

,
w) is EHALTIm if the im M halts upon reading string w . it doesn't

matter whether M accepts or rejects w blc both of those imply that M has halted.

· < M
,w) HArTim if the TM M loops on w.

->
From these statements alone

,
we can start to see how we might map the

elements of Aim to HALTIM

~ We need to design a new TM M' to map results from Arm to HAVT
+ m .

M' should

work like this :

· if the of
machine M accepts W

,
then M' should half on w.

- it doesn't really matter whether we design M' to "accept" or "reject
"

in this scenario
, bk either of those would imply that M' has halted,

and thus would be accepted by HALT
im

· if the
og machine M rejects or loops on w

,
then M' should loop (so that

it will be rejected by HALT
+ m.

S what is our reduction for

I
> The following machine F computes a reduction F:

A
imHALTm F = "On input < M

,
w) :

2 . Construct the following machine M' ;

M' = "On Inputx :

1. Run M on X .

2 . If M accepts
, accept.

3. If M rejects (or loops - this is implied)
,

enter a loop .

"

2. Output < M'
,
wh

.

"

What does the language
~ The problem of determining whether 2 Turing Machines recognize the same

EQ
im

represent ? language.

How can we prove that
~ Goal : devise a computable function - s .

t
.

xE Erm iff. f(x) EQ
im↑ EQ

+m
= <A

,
B) /A and Bare TMs and LCA) = L(B)3

E
+mem EQTm ? -> RECALL: Erm = E<M > /M is a TM and LCM) = $3

->
Notice that in this example ,

our output is of a different form than our

input ! F(X) must take in an input of a Single TM "M" Jaka F(<M >)) ,

but output an encoding in the format of the language EQ-m ;that is
,

it must

output 2 turing machines <Ma
,
MaL

What will be our computable P(X)
,
where x = >M) :

function ? ! Ifx is not a description/encoding of a TM : return 0.

(we can usually omit this line/statement blu its obvious & We aren't concerned with

that level of specificity)
2

let My be an encoding of a TM
, and set Mm = M .

2.

letMy be an encoding of a TM
,
and set M2 = "reject. "

(Mz is a machine which always outputs reject ... aka a machine whose language

is D !)
3

.

return < M2
,
M2)

Why does this reduction work ? -Case] < M > E Eim ,
which means that the language of M L(m) = 0.

· f(x) will output < M
,Mz) where My = M (so LCM , S = D S and My =

a TM who always rejects (so < < M2) = 4)

· Therefore <CM ,) = L (M2) and < Mz
,
M2) @EQim !

-> Case 2 < M> Zim
,

which means that LLM) is not.

·

Mz = M and L(M2) = so L(M2) #L(M2)
,
so < M

,
M2 > #EP

+m
!

How can we create a

I
> Note that : Eim = E < M > / MisaTM and LIM) # * 3 accepts something

"

"M is a TM that

reduction f For ~ We need to create a reduction function of that maps like so :

Arm En Eim ? ↑ (M,
w >) = < M ,

. . . S
.
t .

<M
,wcEArm i

.
f

.
F

.

< Mi EEim

(takes an Aim-format input and returns an Eim format output
,

which as we can see

is a single TM encoding).

~ RECALL that we already proved that Arm & E-m (general reduction) in chS
.I

(see notes pg . 68-69) by creating a TM My which is a "modified" form of input

TM M
. My accepted W if M accepts w

,
rejected wif M rejects W

,
and rejected any

string put it into it that isn't /regardless of whether it is a part of LIMS .

~ RELALL that our final reduction Aimefim involved outputting the opposite of

& im's decider's output when it ran on My
.

· Since we are now trying to map to Eim
,
ala the opposite of Eim ,

all we need to

do is return M
,

itself !

·

read notes pg 68-69 if confused
.↑ 2. Maccepts w < < M

, w)EAim -> need to return a nonempty TM M,

· Back to Arm EmErm : for an input <M
,
w)

,
lets map out the possible cases :

so that M
,

E E
+ M

2 .

M rejects w < M
,w) Aim s need to return an empty TMM

,

so

that M .4 Eim

What is our final reduction f? F(< M
,

W >) :

· let My be a new TM described as soi

M2 = "On input X :

2. if x W : reject .

2. if X = Wirrn the OgTM M on w .
if Maccepts W

, accept.

"

· return <M1)

How do we prove that f ·

By considering the possible cases of applying o on a given < M
,
W) :

mapping-reduces Arm to Eim ? · "Forward direction" :

Maccepts w /<M
,
w > Aim) > My accepts we My is nonempty be it accepts

at least w > Me E-m W

· "backward direction" :

M does not accept w (CM
,
w> Arm) >My accepts nothing

& My is empty

> M2 Eim V

Still left :

· proving Arm [mE +-

·

polier as at end

I
undecidable.

Can Aim be mapping
~ No

.

reduced to Erm ?
~ RECALL that in Ch5 . 1

,
we proved that Arm E-m that Arm can be

"generally reduced" to Erm ,
which he proved in order to then prove that Erm is

· Did this by using an (assumed) decider TM For Erm to create a decider for Arm

· Theorem : AGB i
.

F
.

F
. AEB Laka negating both sides).

- Proof Assume by contradiction that Arm Em Erm
. According to the thm.

above
,
this means that Arm Em Erm . According to Theorem 3 .

28 ,

For languages A
,
B where AEm B

,
if Bis Turing-recognizable,

then A

is Twing-recognizable .
We know that Erm is Turing-recognizable (proven

separately in textbook) Which would imply that Arm is also T-recognizable.
However

,
we already know that Arm is not recognizable (notes pg . 63) ;

therefore
,

the statement Arm Em Erm is a contradiction
, proving that

*
im

is not mapping-reducible to Erm .

2 mapping reducibility an > No
.
To be an equivalence relation

,
an operation has to satisfy 3 properties reflexive,

equivalence relation ? symmetric ,
and transitive · Mapping reducibility satisfies 2 out of the 3

.

reducibility have ?

↑
& transitive :

yes .
For any languages A

,
B

,
C

,
if AEB and BEC ,

then

What properties does mapping
> reflexive : yes .

For
any language A

,
AFA .

F(x) =
X

A EmC

·if BE C by reduction f and AEmB by reduction g ,
we can create a reduction

h for A C by having happly reductions g and F
,

consecutively.

·
symmetric : No

,
if A EmB ,

we cannot assume that BEmA.

I
E Fa

,
Nea

, Mex
,
Cfo

,
doe

Midterm 1 Study Guide/key points

Decidable problems - A
DFa

,
Nea

,
CEG

, ReX
,
pda ,

Edfanfa
, Ces

,
Rex

, por

Undecidable problems
Problem Proof

Am diagonalization
Eim Aim E

+ m

HALTIM A
+m En HALT

im

EQ
+m Eim EQTm

Unrecognizable - Aim
. Proof : Theorem 4

.
22↑ E

+m
Aim Em

Summary'

· Arm E
+ m ,HArTim

·
ErmEEQ + m

Land thus Atm=Em)

· E
+me+m

·

AimE HALT
im

· A
+ m = E

+M

Midterm Review

What is COMPASS about ?

~ the limits of using algorithms to solve problems.

~ code
,

like Python code
,

can ultimately be translated into a Turing Machine
...

TM = Python
>

DFAs/NFAs ,
PDAs

,
CFGs are all "formal" models of algorithms (simpler ones)

&

"Solving a problem" a accepting/rejecting a string

Ch.
1 : Regular Languages

-> Regular language : A language A is a regular language
i
.
F

.
F

.
there exists some DFA

,
NFA, or regular expression that describes

it

> Regular expressions
,

DFAs
,

and NFAs are all equivalent in their computing power .

- Properties : for 2 regular languages A and B,

·

C = A UB is a regular language
· C = A is a regular language (take a DFA for A and swap all

the accept and nonaccept states)
· C = Ao B is a

regular language
· C = A

*
is a regular language

· C = A & B is a regular language :

-if A reg = A reg ,
and if B reg

=) B
reg ...

so if AUB reg ,
then AVB also reg ... and if AUT is reg ,

then AVB is

also reg .

- us equivalent to AMB
... therefore AnB is regular .

Regular Operations

> A = Ehappy ,
sad 3 B = Eboy , girl3 star op. always

> Union : AUB = Ex/xEA or xtB3 = Ehappy
,

sad
, boy , girl 3

includes 2 !
M

~ Concatenation : AoB = Exy1XE & and yeB3 = Ehappyboy , happygirl , sadboy , sadgirls
> Star : A

*
= EX ,

*
2*...* k

/120 and each XA3 = ES
, happy ,

sad
, happy happy , happysad ,

sadsad
, sadhappysad

3

· Intersection : AMB = Ex/xEA and XtB3 = E3
... basically all elements that are common between the 2.

Regular Expressions
· DEFN :

expressions describing languages which are just sets of strings !

s 0 U1 =
a reg . expression describing lang

20
, 13

-> O
*

=

language of all strings containing any of O & 2
,

0
,

000
,

00
... 3

-> (0 U1)8*
= (0-1)00

... concat - symbol is implicit ... lang of all strings that begin w either I or 0
,

and proceed

to contain any # of OS
.

~ & = the language of all strings of
any length over

the alphabet&

Ch.
1 : Regular Languages

Deterministic Finite Automata

> DEFN : A DFA is a 5-tuple (Q
,
G

,
5

, 90 ,
F)

> Example : DFA M For language A = Ew/ w contains at least one I
,

and an even of Os follows the last 13 .

Description State Diagram
2

M = (Q
,
E

,

5
, 9

,
F)

,
where

I
2

. Q = 29
,, 92

,
933 chea 09 93

2. E = 50
, 13

M

3 . S
is described as :

0, 1

02

929292
> DFA rules :

az 9392 ·

every state must have exactly 2 exit transition arrow for each

93 92 92
possible input symbol (can be I arrow sufficing for mult

. Symbols ,

but cannot

4.
9

,
is the start state

,
and have a state that doesn't have an exit arrow for some symbol).

3. F = 2923

~ Transition function : S : QX[Q

·

given a state laka some element of Q) and an input symbol laka some element of E)
,

the output/result is a State (EQ).

Nondeterministic Finite Automata

· DEFN :
ANFA is a 5-tuple (Q

,
E

,
5

, 90 ,
F)

· An NFA is basically a DFA except

9) we are allowed to have [as a symbol ,
and

6) for each Symbols and state :any of arrows with symbols can leaves all a no arrows
,

I arrow
,

or up to IQI

arrows
,
where "IQI" = the number of states in the NFA

.

- Transition Function : G : QXE, PLQ)

· Given a state & an input symbol ,
the result is some element of P(Q)

.

PLQ) is the power set of all possible subsets of the set of states
,
Q.

So the result of the function is one of these subsets aka one of the elements of P(Q)

~
When z possible arrow choices to follow

,
machine "splits" into 2 copies that follow each path.

·

Converting NFA to DFA !! See notes .

Ch.
1 : Regular Languages

Nonregular Languages & the Pumping Lemma

- Example : A = 5001" In 203

·

Pumping Lemma : if A is a regular language , then there is a number p ala the pumping length where for
any strings

in A
, where

ISI = P (the length of s is at least p) ,
Thens can be divided into 3 pieces/substrings,

S = xyz

S .
%

. the Following conditions are satisfied :

2.
for each :20

, xyiz A

· E .g.,
if y = 02 then Xyz = x 012 ; xyz = x 0201012 ; xyz = x z(y = a)

2.

ly1)0 (the length of the ly' substring is greater than 0

3 ·
Ixy/1p .

(the substrings and'y' together are not longer than the
pumping length p.

How to use the pumping lemma to prove a lang . 'B' is nonregular :

2. Assume that the lang is regular in order to obtain a contradiction

2 .

Use the p .L .
to 'garantee' a pumping length ps . t .

all strings
in B which are length =p can be "pumped .

"

(basically assert this claim in order to later contradict it

3
Find a specific strings which is EB where IS1 Ip ,

but which cannot be pumped Lake the 2 conditions above

can't be satisfied)
. Make an assertion about this string being unpumpable (will prove it in next step).

·

s doesn't have to be a specific string ,
it can be like OP10

,
be we know that ISI would have to be < p.

8
Demonstrate that I can't be pumped by considering all ways of dividings into X

, Y ,
2

. (taking conditions
5.

For each potential division' of s ,
Find a value is. t .

the string xyz B 2 and 3 into accunt?

> To see example of a formal proof
,

see HWI !!

· (Informal) proof EX : prove that A = 20
: 15 /i < 3j 3 (there can

only be at most 3x as many
Os as Is

· Assume to the contrary that A is regular & thus satisfies the p .).

· let
p be the pumping length & chooses to be the sting OP20

(for ex
,
if p = 2 then s = 00000021) . We can show that string s = 03pI" cannot be pumped.

·

Ways to divides and how they contradict the
p . L:

-> y consists only of Os (fur ex
,

let p = 2 then 3 = 00000011 ; X = 0
, y

= 0
,

and 2 = 000011 since (xy12 .
)

·

no matter what & is
,

if
y

is some of Os then the string Xy"z will have more than 3x the OS asIs and therefore

won't be a member of A
, violating the p . L . condition I.

·

for ex
,

if
y

= 0 then xy2z = 00000001 ...
i = 7 and j = 2 , <* 3(2)

->

y consists only of 1s (for ex
,

let p = 2 and s = 00000011 ; x = 000000
, y= 1

,
z = 1)

· this splitting of s already violates condition 3
... no way to split S . L . Y = / and Kylep .

->

y consists of Os and Is also violates condition 3.

Ch.
1 : Regular Languages

Nonregular Languages & the Pumping Lemma

~ basically
,

for each possible "split" ,
show that they violate at least 2 of they conditions.

> Like in the ex from
pres page ,

we can only even splits into
xy,

2 S. t- Y
is all zeroes ...

the other divisions automatically eliminated

"valid"
b) of Lord . 3

.

We then consider that split & Show how it violates cord . 1.

-> In a proof
,

we have to generalize/state that we don't know what p is and are "imagining" it to be some number.

Ch
. 2 : Context - Free Languages

> Context - Free Language
: All languages which can be recognized by a CFG or a PDA

->
CFG & PDAs equivalent in computing power.

-> All regular languages are also context free (but not necessarily vice versa)

~ EX : A = EO"2V/M = 0 3 ...
CFG G which generates A : S2-OS11/9

Context Free Grammars

~ DEFN : A CFG is a N-tuple (V
,

S
,

R
,
S)

,
where

2. V is the finite set of variables (e .

g .

R
.,

Ra
,
Ry etc

.
)

2. & is the finite set (disjoint from V) of terminals Jaka in put alphabet
3

.
R

is the set of rules (e . g . R2- a R1b)

4 . SEV is the start variable.

-> Leftmost Derivation : Deriving a string from a grammar S . t .

at
every step , you always replace the leftmost Variable First

Crather than just randomly
> Ambiguous Grammar : A grammar

that can generate the same string in more than one way
- aka

,
there exist 2 or

more leftmost derivations that generate the same string.
·

Not every ambiguous grammar can be modified to be/ converted into an unambiguous grammar, but some can.

· Thm :
every DFA can be converted into an equivalent CFG (see ch . 2 Notes

"

Chomsky Normal Form : A CFG is in CNF if every
rule is of the form A CBC or Asa

,
where atf and

* , B
,
C EV

... except B or C can't be the start variable
.

Also
,

the rule Sta is allowed iff. S is the start variable .

the Rules for a CNF CFG

· the start variable cannot be on the right-hand side of a rule

·

no "unit rules" allowed
,
aka where the r

.
h . S

.

is just a single variable (be then
you

should just replace it w/

Whatever that var points to
,
to eliminate the "middle man"

- EXA + B
,

B + 1/0 is NOT CNF but A-10 is.

·

the RHS of a rule can't contain a combo of terminals & Symbols (eg A-1(2) can only be all terminals or

all symbols

·

if the RHS is made of terminals ,
it can be max I terminal?)

·

if the RHS is made of symbols,it must be exactly E symbols (no more
,

no less) ...
(e . g. A-B and At BCD NOT allowed

-> Thm :

every CFG can be converted into Chomsky Normal Form

Ch
. 2 : Context - Free Languages

Pushdown Automata

~
Implicitly nondeterministic

.

&
a PDA is basically an NFA with a stack.

& DEFN : a PDA is a 6-tuple (Q
,
&

,
&

,
5

, 90 ,
F)

,
where

1. Q = Set of States

2. E = in put alphabet

3
. T = stack alphabet
↑

Transition function : 8 : QX &
q ** >PLQXTal

· takes in the current state
,

the next input Symbol being read
,

and the current stack symbol on top

of the stack (since that's the only one which can be read)

Domain
· ES + E ... S(Qx2 x42) indicates a more the PDA makes Wo reading an input symbol

Laka automatic more due to nondeterminism

·

Ta = ↑ + m
...

S(Qx & gX2) indicates a more made Wo
reading Laka popping) a stack symbol

·

outputs the power set of possible next moves (since nondeterministic

Range · each possible "next more" : a State (b/c PDA will either remain at current state or more to a new one) and an

stack symbol ,
including2 (b PDA may Cor may not write some new symbol En onto the stack) .

5.
gEQ = Start state

6 . FCQ = Set of accept states

& transition functions in state diagrams indicated by ab Sc where

·
a = next input symbol read... if a = 2 its an automatic (nondeterministic) more being made

· b = the symbol currently on top of the stack
,

which my get popped off& replaced by a

Lifb = 2
,

indicates a transition made without popping anything off the stack

·

c = the symbol that may be pushed on top of the stack as part of the transition ... i
.
F

.
F

.
the current to p symbol is

b

Lif c = E
,

indicates transition made without pushing anything onto the stack

& a
,
292 : upon reading a

,
the PDA pushes Conto the stack

-
a b 9a :

upon reading a , the PDA
pops b off the stack but pushes nothing

& a
, a < 2 :

upon reading a, the stack does not change
& a b < C :

upon reading a,
i

. F
. F

, the current top stack Symbol is a b
,
the PDA then pops b off & pushes <on to the stack.

Ch
.
3 : Church-Turing Thesis

Turing Machines

& implicitly deterministic (for now (

> Features/key points :

-> a model of computation (like DFAs
,
PDAs

,

etc.) goes from state to state , contains an accept state
,

etc.

-> Like a PDA except instead of a stack
,

has an unlimited tape that it can read
,

write to
,

& more around

~10 restrictions

~ What is diff about TM versus other automations :

·

Can both write toa read from
any point on the unlimited tape

·

the read-write head can more both left & right.
· When th enters an accept or reject state

,
it takes effect immediately don't need to wait till end of in put string

.
< Transition Function : S : QXsQX↑ xEL

, R3

· f(q
,

al = (92
,

b
,
L) -- if the TM is

currently in state & and its head is over a square / Symbol,

the TM moves to state go
,
replaces the "a" with "b"

,
and moves the tape head Left after writing

> DEFN : A TM is a 7-tuple (Q
,

S
,

4
,

5
,

30 ,accept , & reject) where

1. Q = Set of states

2. E = input alphabet

3
.

T = tape alphabet

4 .

S : Q x4 + Q + 4 + 24 ,
R3

5

gEQ = Start state

6-

& accept
and grejes

are the
accept& reject states

·
Computation Process : For

every input string ,

aTm either accepts, rejects ,
or loops

Recognizable vs Decidable

> Recognizable Languages : languages for which there exists a TM which recognizes it aka
,

For
every string X

XA if the TM accepts X

XA if the TM rejects or loops onX

= Decidable language : a TM M which decides language A : for every string X

,

recognizable All

XXA if M rejects x decidable languages

context-free

X A if M accepts X

-
! I

Ch
.
4 : Decidability

Decidable Languages
~ A EQ

DFA
,
NEA

,
CEG

, REX
,
PDa ,

Edfanfa
, ces

,
Rex

, pda i Afa
,
nfa

, reX
,
co

,
Phe

Undecidable Languages
language Proof

Aim diagonalization
E

+m
A

+m
= E

+M

HALT A
+m En HALT

imTM

EQ
+m Eim EQTm

E
+m Aim Em

Unrecognizable : Arm

- Thm : A language A is decidable :. E
.
F. A and A are turing recognizable.

Reducibility
~ To prove that a langrage B is undecidable : Show that Atm & B

... assume that a decide

TM My exists for B
, and use M2 to design a decider TM for Arm

- To prove
that a language B is unrecognizable : show that Am FB ... create a computable

function F(x) S . t . VstringX ,
XeArm iff F(x) EB

·

converting the input of Atm into an input for B.

Rules

& for AEB . -- If B is decidable
,

A is also decidable

· if A undecidable
,B also undecidable

~ for A EB --- same as above PLUS

· ifA not recognizable ,
B not recognizable .

& If A decidable
,

A decidable

-> if A decidable
,

At decidable

-> decidable langs

undecidable
langs

- Provingsnagisda

e

Ch7 : Time complexity

I
1. I MeasuringComplexity

Part 3 : Complexity Theory

What is complexity theory?
So far

,
we have discussed the concept of whether or not an algorithm exists for

a certain problem (or if it is unsolvable

-> Now
,
we shift to discussing the resources that it takes to solve a certain (decidable)

problem e . g .,
how much time

,
memory , etc .

·

more concerned with comparing/analyzing decidable problems
,
than determining the

decidability of a problem (which is what computability theory was focused on).

->

complexity theory : An investigation of the time
, memory ,

and other resources

required for solving computational problems.

What is time complexity theory
->

Key question (of this chapter) : How much time is required to decide a decidable

about ? language ?
-> In complexity theory ,

we classify computational problems according to their

time complexity.

What is a worst-case Since we are discussing decidable problems ,
we will be analyzing their decider TMs tr evaluate

analysis ? time complexity. Specifically ,
lets think in the context of single-tape ,

deterministic

TMs
.

&
Worst-case analysis is a way to evaluate the speed of an algorithm Jaka a TM !) where

We consider the longest running time of all inputstrings of a certain length.
↑

·

aka
,

the number of transition function moves
-

reading an input, moving around onthe

What does "time" mean in this ~ In the (possibly over simplified) context of STDTMs
,

we take "running time" and the

context ?
·

amount of time' a TM takes to solve a problem to mean the number of steps

that the TM takes befor reaching accept/ reject

tape ,readingnext in put ,
etc.

· So worst-case analysis = Given an algorithm , among all inputs of length X
,

What is the

max number of steps the TM takes ?

What is "running time" ? ~ The running time
,
aka the time complexity of an algorithm ,

is the number of steps

that it takes to solve a problem in the Worst case
,

as a function of the input length.
-> Formal DEFN : For a deterministic ,

decider TMM
,
the running time of M is the

function F : N-N
,

where f(n) is the maximum number of steps that Muses on

any input of length n

· We use n to represent the length of an input (customarily
·

If fin) is the running time of M
,

we

say that "M is an F(n) Turing Machine"

and that "M rues in time F(n)"

What is asymptotic analysis ?

I
-> A way to estimate the exact running time of an algorithm in order to understand the running

time of the algorithm
When it is run on large inputs.

↑
For the

running time expression of an algorithm ,
consider only the highest-order term laka

term with largest exponent) ,
and disregard the coefficient of that term as well as any

lower order terms (b12 they are insignificant in comparison).

·

For EX
,

for the Function Fin) = Gn3 + In2 + 20n + &S
,

we say that fis

asymptotically at most ne

What is big-O notation ? -> The formal
way to describe this relationship between the running time expression

,
f(n)

,

of

an algorithm ,
and its asymptotic estimation

.

·

EX the big-O notation for the expression above is F(n) = 0 (n3)

~ DEFN : Let fand
g

be functions F
, g

: N-Rt (R=Stallnonnegationas

Say that f(n) = 0 (g(n) if positive integers cand no exist such that for

every integer n = no
,↑ f(n)

.

f(n) = cg(n)
· When Fin) = Olgan)) ,

we say that gin) is an asymptotic upper bound for

->

Basically ,big-O estimation gives you a run time that is less than or equal to the

exact run time if we are are disregarding insignificant' differences up
to a constant factor.

-> EX the expression Fin) = 20(n) represents an upper
bound of 2

<

For some constant C.

What is an example of a time - Lets analyze the run time of the single-tape deterministic T. M
. My which decides

analysis of an algorithm ? the language A = 50 "1" 117203

-> M
,

= "On input wi

2. Scan across the tape and reject if a O is found to the right of a 1.

2. Repeat if both Os and Is remain on the tape :

3.
While the tape has at least one O and at least one I

,
scan across the

tape , crossing off a single O and a single 1.

↑.
If Os still remain after all Is have been crossed off

,
or if Is still remain

after all Os crossed off
, reject .

Else
,

if everything is crossed off
, accept .

"

How do we analyze Me ? -> We can determine the time complexity of M
, by considering each of its& steps

separately
,

and adding the times together.

What is the time complexity of

I
2.

In Stage 1
,
the TM scans across the entire tape to verify that no OS appear after a 1.

each step ? RECALL that the head of a TM by default begins at the leftmost tape symbol .
So if a given

input string isn symbols long ,
then it takes My A steps to do this scan.

· Additionally
,
My repositions its head back to the start of the tape once it is done-

another n steps taken to do this

-> So the total used in this stage ,
for

any inputstring wwhere Iwl = n
,
is In steps.

Using the rules of asymptotic analysis Lakabig-O notation)
,

we say that stage I uses

O (n) Steps (since we disregard the coefficient '2') .

2 .& 3.
In these stages, My repeatedly scans across the entire tape , crossing
· f 2 input symbols (a 0 and a 1) during each scan.↑ · Each of these scans takea steps (since My has to read every symbol from left

to right) aka "O(n) Steps"
· Since after each scan

,
the total * of symbols to read decreases by 2 (b1 2 get

crossed off)
,

the machine only needs to perform this scan action at most U12 times.

·

Therefore
,
the total time taken by stages 2 and 3 is

n . 2 = In 2 = 0 (n2) Steps !
4

In this step ,
the machine makes just a single scan to decide whether to accept

or reject .
So the max steps taken is n ;

i

. e. O(n) steps.

How do we use this to determine
-> Add up each big-O and then apply the "asymptotic analysis" rules :

the overall time complexity of M2 ?
The

running time of M2-aka the total time ofMy on an input of length
n is then O(n) + 0(n2) + O(n)

,
which is equal to 0(n2) after

disregarding lower order terms .

"M2 is a STDTM that decides A in O(n2) time ,

"

What is the "time complexity ~ For
any

function of n ten)-akalike n
, n? 24

, nlogn ,
etc - the time

class" ? complexity class TIME (t(n) is the collection/ set of all languages that

are decidable by an OCHEDD- time Turing Machine.

(presumably an STDTM ?)

TIME (t(n)) = GB/B is decidable by an Oct(n)) time STDTM 3

-> From the EX above
,

we know that the language A = 201" /K203 is an

element of TIME (n2)

· Because My decides A in time OCn)
,
and TIME (n2) is the set of all langs

that can be decided in O (n2) time .

Why is TIME (1) a subset -> the TIME (tin)) Sets naturally form subsets
,

e .g. TIMELI) [TIME (n) -TIME (n2)1. . .

of TIME (n ?) because any TM can easily become less efficient... aTM that decides a lang ina steps

Lake O(n) time) can also decide that language in2

steps if it wants to

which decidesA more quickly?

I
(copy down later

Asmall
- o

Is there a STD Turing Machine -> Actually , yes ; theFollowing STDTM My Shows that AETIME(nlogn) :

-> Thm :

Any language that can be decided in on log n) time on a

single tape deterministic TM
,

is a regular language
- Complexity Relationships Among Computation Models

What is a key distinction -> The discussion of time complexity highlights an important distinction between

between computability theory complexity & computability theory :

& complexity theory ?
· In computability theory ,

the Church-Turing thesis implies that all reasonable

models of computation for some language are equivalent (e .g .
a DFA

,
PDA,

TM
,
and multitape TM which all decide the language B)

-> However
,
in complexity theory ,

we see that the choice of computational model

does make a difference - different models (like all the ones we've learned

about so far) can have different time complexities for the same

language !↑ in O(n2) or at most O(nlogn) time. But a two-tape TM

· For ex
,

a single-tape TM decides the language A (from example)

My (see textbook pg
281) decides A in OCn) time.

· The complexity of A depends on the model of computation selected
.

So then what model do we - The time requirements don't actually differ significantly for typical
use to classify computational deterministic models ; i

. e., our classification system isn't very
sensitive to

problems ? relatively small differences in complexity.

· Therefore
,

we can continue to use the single tape deterministic TM

as our "Formal model" used to classify a language's time complexity.
What is the relationship between- > Thm : Let ten) be a function (where(n) In) that describes the running time

single - and multi-tape TMs of a multitape Turing Machine My Jaka
, Me is a Hns-time T

.
M.)

(in terms of complexity) ? Every(n)-time multitape TM My can be converted to an equivalent single

tape Turing Machine M2
,
which will take at most (tm))2 steps jaka an

equivalent th (n) - time STDIM.

· Proof is basically that for every Step the tin)-time MTDTM takes
,

the STDTM will use

at most(n) steps to replicate the actions of that single step of the MTDTM
.

Since the MTDTM takes at most ((n) steps to compute
,

and the STDTM uses at

mostn) steps for each of those steps ,

the STDTM therefore will have a big- O

runtime of thn) · (n) = +2 (n) maximum steps.

TMs (re complexity) ?

I
20ck2 time deterministic Turing Machine.

What is the relationship between -> Thm : Let thnl be a function
,

where(n) In
. Then for

every single-tape
deterministic & nondeterministic nondeterministic Turing Machine of tin) - time

,
there exists an equivalent

->

key takeaways about model relationships :

complexity of a problem measured on a STDTM versus a MTDTM

· There is at most an exponential difference between the time complexity
of a problem measured on a deterministic versus nondeterministic STTM.

What do we know about -> Thm : If B is a nonregular language ,
then BETIME (F(n) For any

the case ?

↑
· There is at most a square (or "polynomial") difference between the time

the time complexity of
F(m)

=(nlogn)

nonregular languages ? small -o "lessthan"

· This basically means that the running-time for all nonregular languages

can never be less thann logn ; that is the lowest possible running
time

· NOTE : For
any positive integer X

,
X < X logx > X< 2

*

·

By this theorem
,

we can then see that since the language
A = 50K]/K103 is nonregular , there does ept exist an OCm)- time

decider for it (since n < nlogn)
What about regular languages ? -> Thi : I8B As a

regular language ,

then B can always be solved by
some TM in OLn)-time ! aka

,

BE TIMEIn)

Why is this - /f a language is regular ,
that means there exists a DFA which recognizes it (RECALL Ch1 .

1)

· A Turing Machine can easily decide a regular lang by simply imitating Kalling the DFA

which recognizes it - it just does everything the DFA does

· Since the DFA takes exactly I step upon each input symbol it reads
,
it takes the DFA

"at most "A Steps to compute upon an input of length n ... aka O(n) time !

·

And since the TM imitates the DFA
,

it also computes in O(n) time
.

Which model of computation do we use?

CLARIFY : Why doesn't it matter

↑
-> We just discussed how the same language can be decided by an 0 (n2)- time

which model we use to classify STDTM
, an O(n) -time MTDTM

,
or even an O(n)-time Python function

the complexity of problems ?
· These seem like big differences in time complexity ... why doesn't it matter ?

-> ANS : Because for the purposes of a theory course
,
we can pretty much just view all

polynomial running times as equivalent. e . g.

O (n) = 0 (n2) = 0 (n2) v
...

I
where n is the exponent

,

even the largest polynomials :

Why do we treat all polynomials - Several reasons :

1999 , n2
,

BUT 1999 > 22 yu

2 -

Treating polynomials as equivalent allows us to be agnostic to the model :

don't have to care too much about the details
,

can work with whichever

as equivalent
?

↑
2. Any n-polynomial function is still

eventually going to be smaller than a function

model
you want bk not worried about complexity differences.

3 .

In practice ,
we rarely see runtime polynomials as big as na

anyway...
Problems decidable in polynomial time are almost always solvable in real time

Laka by a human being manually) anyway.

Ch7 : Time complexity

I
1

.
2 : The Class P

Part 3 : Complexity Theory

What is a polynomial ? (A number where n is the base and the exponent is some constant
,

e .g.

n
,

n2
,
na In? En, etc.

What is an exponential ?
-> A number where n is the exponent ,

e .g.
24

,
2014)

,
zo

,
etc.

So ? -> In this class/subject - the field of complexity
- small differences in run time don't

matter (eg ,
a runtime of OLnlogn) v

.
S

.
O(n2) v . S . O(n) v.s

.
@(n3] etc.

· The only difference we care about is polynomial v . S. exponential

What is the difference between ->

Polynomial runtimes equate to problems which could be deemed "easy" ,
"small",

the two ? "fast"
,

"tractable"
,

etc.

-> On the other hand
, exponential runtimes equate to problems deemed "large",

"hard"

"slow"
,

"intractable"

-> For more info about why we don't distinguish between diff polynomials ,
see notes prevch

(pg97-98) ,
or textbook py 284-286

What is the class P ? -> A set of languages (RECALL def of a "class")
. Namely ,

the class of all languages
which are decidable on a single-tape deterministic T

. M
.

in polynomial time.

P = &L/L is decidable by a polynomial-time STDTM 3↑
·

I is aboundless constant ; placeholder for t since technically ,
"no" isn't a polynomial .

-> Formally : P = U TIME (nk)
K

· aka
,
the Union of the sets TIME (n)

,
TIME (n)

,
TIME (n2) ... TIME In'S

Why is the class P important
2. The elements Jaka problems/"languages") in P are invariant for all models of

to
complexity theory ? computation which are polynomially equivalent to the STDTM

· This includes ND TMs
, regular TMc

,
MTTMs

,
all of the other models we've

learned so far
,

and even the tmodel" ! a .k . a
.

the speed that a problemo

tabypyofractions that are realistically solvable

on a computer .2item

How do we show that an
-> To analyze an algorithm to show that it runs in polynomial time

,
have to do several things :

algorithm is an element of p ?
2· Describe the algorithm with numbered "stages" (like we've been doing ; see EX of

M
, on pg. 9)

~
Give a polynomial upper bound (usually in big-O notation) on the number of

stages that the algorithm uses when run on an input of length A

.

3. Examine the individual stages in the description to ensure that each can be implemented in

polynomial time on a reasonable deterministic model.

I
PATH = 576

,
s

,
/G is a directed graph that has a directed path from vertices to

What is an example of a
< The PATH problem : to determine whether a directed path exists between 2 nodes on

problem in the class p ? a directed
graph

. In other words,

What is a directed graph ? vertice t . 3

-> Thm : PATHEP
.

-> A data structure (RECALL COMP210 Imfar) defined by Vertices (aka nodes) and

edges ,
where the edges are directed

. Specifically
,

a directed graph is a pair

of sets G = (V
,
ES

,
where :

· V is the set of vertices
,

for ex E2
,

2
, 33

· E is the set of edges ,
where each element of E is a pair of vertices depicting

the start & endpoint of the edge.

-> And a path is a sequence of vertices that you can make by Following the directed

edges and without repeating vertices.

> For ex
, graph G= (V

,
E) V = G1

,
2

, 33 E = E (1
,
2)

, 13
,
2)3 can be described

⑳
by this diagram :

L
How is a directed graph "encoded" ③
(for a computer to interpet it ?? - As an adjacency matrix : an n n

array where n = IV

·

Every entry [i
, j] is 1 if an edge from itojexists ,

and O if not

· For example , G2 could be represented as int 67][] = 250
,

2
,

03
,

20
,
0

,
03,

algorithm for PATH ?

↑
determining if any is a directed path from sto t.

↳ ↳

20
,
1

,
033 ;, which would look like this :

2 2 3

I ⑧

% 8
]

What would be an exponential-time -> The brute-force search of examining every single path in 6 and

· This method would help us prove that PATH is decidable
,
but doesn't provethat

it can be solved in polynomial time.

What is a better
, polynomial-time >To employ a graph-searching method

,
such as breadth-first search

.

Basically,

algorithm for PATH ? lets devise an algorithm that starts at vertice and successively"marks" all nodes

in G which are reachable from s by a path length of 1
, then 2

,
then e

,
and so

on until M--the of nodes in the graph aka the maximum possible path length.

Then
,

we just check to see ift was marked

I
2. Repeat until no additional nodes are marked :

algorithm? sand ti

2. Place a mark on nodes .

3. Scan all the edges of G
.

If an edge (a
,
b) is found going from

Formal definition of the

↑
Let M = "On input < G

,
s

,
t) where G is a directed graph with nodes

a marked node 'a' to an unmarked mode'b'
,

mark node b.

4.
IfI has been marked

,
accept . Else

, reject .

"

What is the time analysis for
-> Stage 1 :

only executed once
,

OCI) time

this algorithm ?
->

Stage 23 : each time that stage 3 is performed ,
it marks off at least one

additional node in G (except for the last time
,
at which point the algorithm

moves on to stage 1)
.

Since a graph
G has m nodes

,
then stage b must run

a maximum of m times .
O (m) time

,
where "m" is

roughly less than or equal

How do we know that this to the size of the input .

alg runs in polynomial
time? -> Stage & :

only executed once.

->
Overall

,
this algorithm then uses a total number of at most 1 + 1 + m stages ,

which gives a polynomial that is in the size of 6
. Hence

,
M is a polynomial

time algorithm for PATH.

What is another example of An algorithm that determines whether an integer is an element of a certain array
an element of P ? (think coding-level ,

like a Java or Python array) . e . g.

Az = E < B
,
t > /tEB

,
where B is an int

array and tis an int 3

· The running-time of Ay is O(n)--just scan the array.

SKIPPED :

Every
CFL is in

Ch7 : Time complexity

I
1.3 : The Class NP

Part 3 : Complexity Theory

Do we always know whether ~ No ! For example , the algorithm to determine whether an intL]
array contains

an algorithm is solvable in a subset which can sum to a certain number
,

aka

polynomial time ? *
2

= E < B
,
t > / There exists some subset of B that sums to t 3

· We can easily devise a brute-force algorithm to solve this language for

every possible subset
,

sum the numbers & check if it equals t but this would

not be polynomial . It would have O(n · 2) time.

· Nobody knows whether this problem is EP/solvable in polynomial time.

Another example ? ~ A notable example of a problem whose polynomial-time algorithm has yet to be

discovered is HAMPATH.

HAMPATH = EG,
s

,
t)/G is a directed graph with a Hamiltonian

path from s to t .
3

What is a Hamiltonian path? (A directed path that passes through each nodelvertice exactly once. For example,

-"L
L J

S
V - L

t
> 7

>

The red highlighted Hamiltonian path from s to t.

"easy" I solvable in

↑
-> They are more "difficult" to devise a non-brute-force algorithm for.

What do these 2 problems (A29 they seem impossible to solve in polynomial time
... maybe they are ? But

and HAMPATH) have in common? it hasn't yet been proven .

& · Though we can't prove the absolute "hardness" of such problems Jaka we can't

polynomial time
prove that HAMPATHE P but we also can't definitively prove that HAMPATH #P),

"difficult" not solvable
we can prove statements about the relative difficulty of problems

in polynomial time Laka reductions ! Like in Ch . 2)

· "A B" A reduces to B A is at most as hard as B

·

"If this problem is hard/easy ,
then this problem must also be hard leasy"

· Also - such problems are difficult to solve
,
but easy to verify

.
What does it mean to"verify" For a given problem ,

if someone provides a specific element that they claim

a problem ? is in that problem language , verifying is being able to determinedly
conclude whether or not that claim is true.

-> Basically : Verifying the existence of a hamiltonian path is much easier than

determining its existence.

~ This property is very widespread/common among problems not in P (like HAMPATH)

and is called polynomial verifiability
.

What is polynomial

I
-> A feature of a problem where it can verify whether a certain object

verifiability ?
is an element of it in polynomial time.

Are all problems polynomially 9 No ! For example ,
the complement of the HAMPATH problem,

verifiable ? #) AMPATH = EG
,

s
,

> /G does not have a Hamiltonian path from S to + 3
.

· The only way to verify that a graph doesn't contain some specific

hamiltonian path is to exhaustively check every possible path ,
which

,
as

we've already discussed
,

can't be done by a polynomial-time algorithm.

What is a verifier ? ~ DEFN : A verifier for a language A is an algorithm Jaka a Turing
Machine) V where

A = Ew / There exists a string c (possibly dependent on wh

St . Vaccepts <W ,
<)

.
3

What is "W" ? -> w is a (string) input in the form of the input that the original language

A takes

What is "C"Y -> C is the additional information that the verifier uses to verify whether

string w is a member of A
,

called the "certificate/proof" (of membership↑
a path is a ham. path

, c would be a string encoding of a specific graph path.

in AS

· Usually ,
c takes the form of a "proposed solution". For example ,

if verifying that

How do we measure the time a RECALL that the "n" in O(n) refers to the length of the input string
of a verifier since its input> We measure it only in terms of the length ofw (not c).

has I strings? · A polynomial-time verifier then runs in polynomial time in the length of W

·

For polynomial verifiers
,

the certificate c inherently has polynomial length
(in the length of w)

,
because that is all that the verifier can access in its

time bound.

-> Verifiers usually aren't super clever

How does the machine V - Let's look at an example of making
a verifier for HAMPATH to help understand :

work ? 2)
specify the certificate C : In this case

,
the input for the certificate depends

on the details of the input graph itself
,

so we can write it as a function of the graph-

2 (G
, s ,

t) = a specific Hamiltonian path from sto t (i
.

e
.

a list of

vertices
,
which is what a "path" is .

2) The input to a verifier is both the al original input to the problem A
,
and b) the

certificate : V = "On input (6 ,
5

,
7)

,
c) :

1. Check that I is a hamitonian path from s to t.

2. If so
,

accept. Else
, reject .

I
which sums to + 3 would just be some subset of B . The verifier simply adds up the

·

Similarly ,
the certificate for a verifier for Az= ECB

,
t > 1 J

some subset of B

numbers to see if they sum to t

What is the class NP ? DEFN : NP = &Al There exists a polynomial-time verifier for As

· NP is the class of all languages/problems that have verifiers that run in polynomial time.

What is the relationship betweena Fact : PINP ; all problems in Pare also in NP

& andp ? ·

Why? Because verifying is easier than solving
. Any polynomial-time decider

of a problem automatically yields a verifier. This verifier doesn't even need a

certificate - it can just run the decider machine on its input !

Is P = NP ? -> No one knows ! Wehaven't yet discovered a problem which is in NP but definitively
in P

. (Because problems like HAMPATH aren't disproven to be in P ; an algorithm

just hasn't been found yet .

-> We don't know if using a nondeterministic TM actually gives us more computing

power/allows us to solve more.

What is the alternative definition > Thm : A language is in NP if & only if it is decided by some polynomial-time
of NP ? nondeterministic Turing Machine.

NP = &A 17 a polynomial-time NTM that decides A3

· N
. P.

= Nondeterministic Polynomial-time

-> Basically , any polynomial-time verifier can be converted to

↑ ↓

· An NTM is a decider iff all of its computation branches halk on all inputs.

RECALL : How do ~
A nondeterministic TM operates like a regular TM

, except that at
any

nondeterministic TMs operate ? point in its computation ,
the TM can branch off into several possibilities

of what to do next.

· Normal TM transition function : S : Q + 1 eQx * xEL
,

R3,versus

NiM transition function : S : Qx & + P(QX * x EL ,
R3)

· A decider NTM accepts ifas soon as at least I branch accepts on a

given in put.

How is the running time for
-> DEFN : The running time of an NTM N is the function F : N -> W

,
where

an
NTM calculated ?

&(n) is the maximum number of steps that Nuses on any branch of

its computation on any input of of length n.

·

Basically ,
the running time = the length of the longest branch.

I
> N. = "On input < G

,
S

,
t)

,

where G is a directed graph with nodes s and t :

What is an example of a
-> We can use an NTMN2 that decides HAMPATH & run a time analysis to show

poly-time NTM ? that it runs in polynomial time
,

thus proving that HAMPATHENP :

2. Write an array
P of length m (where m is the Of vertices in the

graph) where each PCO
, 1 ... m-1] is one of the vertices in the graph.

· When appending elements to the array , nondeterministically select one

· So basically ,
we are nondeterministically going

to create mu
array

lists,

with each branch of the Nim following one list.

Check whether the list represents a ham . path from S to - specifically,↑ 2.

of (7
,
2

,
3, ... m) to be the next num .

in the list

·

check if there are any repetitions in the list

·

check Whether s = P[O] and t = PLm-1]

· check whether an edge exists between every mode in the list & the nodes

to its righta left .

3. If it's a hame path ,
accept .

Else
, reject.

How do we know that N1 <The
key to checking if a given graph contains a Hamiltonian path is testing every

runs in poly-time ? possible path and there are a lot ,
which is why HAMPATH cannot be decided

in polynomial-time by merely a STDTM.

· With an NTM
,
we can have each branch test one path . The longest it can take

For a branch to compute is

2. Scan list for repetitions & reject if any found : m Steps

2. check if the list starts with s & ends with t : m steps

3- check for directed edges
:

~m steps

m + m + m = 3m Steps

-> Since the running time of an NTM is given by its longest branch
,
we know

that N
, runs in OC3m)

,
aka O(n) time !

How are these 2 definitions >The proof that &Alba poly-time verifier for A3 and EAI A is decidable by

of NP equivalent ? a poly-time NTM3 are actually the same set Jaka NP !) is given by showing that

any verifier can be converted to an equivalent poly-time NTM , and vice versal

· have to prove both directions of this statement

RECAP of what these machines
-> RECALL : The goal of a TM that decides a language

X is to
, given an input w ,

are meant to be doing ? conclude
whether or not wEX.

~ RECALL : the goal of a verifier V for a language X is to
, given an input

of X
,

w
,
and a certificate c

,
to sec to determine whether we X.

to a (poly-time) NTM ?

I
verifier for A : V = "On input <W

,
2) : use e to decide if we A "(generalized

How do you convert a verifier >
Let AENP

,
which indicates by definition that there is a TM V which is the

· Assume that V runs in time O(n")
,
where is the length of the inputstring W.

· We can create an NTM Ny that decides A in polynomial time by basically using

the nondeterminism to create every possible certificate string a Laka every possible

string of the alphabet (2) ofc
,
and then testgin each of them through V

· Yes
,
this seems kind of crazy & unrealistic - how could it be done in poly-time ?

· ANS : Even though there might be a crazy large amount of computation branches
,
it

doesn't affect the running time of an NTM because its decided solely by the time of

the longest computation branch.

-> N = "On input w of length ni

2. Nondeterministically select a string cy of length at most m↑ (One nondeterministic branch per possible certificates

2 ·

Run Von in put >W
, Cyl

3. Return the output of V (accept if Vaccepts , reject if V rejects
-> This is the general idea behind the NTM decider of

any problem

in NP : To nondeterministically try every possibility.

How do
you convert a poly-time

-> Since the NTM operates by "crafting" every possibility by nondeterministically
Nim to a verifier ? adding symbols to a string at each step ,

we can create a verifier by Simulating the

specific branch of N that corresponds to the symbols in c :

-> V = "On input Sw
, 1)

,
where wand care strings :

2. . Simulate Non imput w
, treating each symbol of cas a description of

the nondeterministic choice to make at each step .

2.
If this branch of N's computation accepts

, accept .
Else

, reject .

"

What is the nondeterministic s For
any Function (n)

,
the n . d

. time complexity class NTIME(tn)

time complexity class ? is the collection/set of all languages that are decidable by an O(t(n)-

time nondeterministic Turing Machine

NTIME(+(n)= NP = UNTIMECn" (just like P = UTIME (nk))
,
aka

K

NP = SA)A is decidable by an OCn") - time NTM3

->

By definition YNTIME (nk) is a subset of UTIME (201)

exponential time brute force method
&

Ch .
7 so far ?

I
=

YTIMELn") (TIME (nin ? ...)

Summary : Key points of > P =E A) A is decidable in polynomial time by a DTM3

= "easy-to-solve problems"

-> NP = EA) A is decidable in polynomial time by an NTM3

as well as [A/J a poly-time verifier for A3

= YNTIME (nk

= "easy-to-verify problems"

-> PGNP ; all problems decidable by a poly-time DTM are also decidable by a

poly-time NTM↑ -> Verifiers - V (w
,
1) : "use c to determine whether wis in A

"

*

-> No one knows if NP is a "Strict superset" of P j e
. g .,

if there are any

languages in NP but not p

·
aka

,
problems which are "hard to solve

, easy NP

to verify" ; think of Sudoku : its very difficult ?
P 7

to come up with a Sudoku prazle ,
but relatively

quite easy
to verify ,

e . g. Check a filled-in puzzle

t o see if it is a correct solution.

What is the SAT problem?

I
-> SAT = EXY)1 Y is a satisfiable boolean functions

,
where I is

Part 3 : Complexity Theory
Ch7 : Time complexity 1

.
& : NP-completeness

a string comprised of some sequence
of :

a) variables X,
, xz . -.. Yo and

b) their negations,2 ,
-- . An

,
which are string together by

1) "

or "operators (Vs)
,

"and"operators (As)
,
and paran theses'(() .

- For ex
, Ra = (5

,
&x2) VLX

, A A X2I could be a sample input to SAT.

What
strings does SAT -> A string C

,
which is a sequence of the symbols defined above

, is satisfiable

accept? (to SAT) i
. S .

F
. there exists some way to assign a value of either 0 (-False) or

1 (+ True) to each variable X* n
S . t . the entire expression evaluates to TRUE.

·

For ex
,
41 is satisfiable if we set Xz

= 0
, "z = I

,
and Xy = 0 or 1.

·

Meanwhile
, Strings like 42 = Xz1 z and

& = (x2Vx2)(X2VE)n(X
, Vxy)d(X, VX2) are not satisfiable

.

Is SAT in the class NP ? MmmmmmmRECALL : What is mapping
-> For

any 2 languages A
,
B

, AEB (A is mapping
- reducible to B") if there exists

reducibility ? a function f that maps strings to strings (O : &
* -[

*

) and which is

computable by a DT. M .
Such that :

A B

F

for
every string X

,
XEA i

.
F

.
F

.

f(x) EB . -

· THEOREM : if A is undecidable and A EmB
,
then B is undecidable

->

Basically , mapping reducibility is used to show that if problem A reduces to

problem B
,
then A is at most as "difficult" of a problem as B

,
because a

solution to B can be used to solve A

What is polynomial-time -
Basically the same idea as mapping-reducibility ,

except focused on time efficiency
,

(mapping) reducibility ? I
.
e . testing if a language A is efficiently reducible to B.

· Instead of just finding a function that maps A-inputs to B-inputs ,
we

specifically want to find a polynomial time computable function.

· Formal DEFN :

Language A is polynomial time reducible to language B ,
written AEB ,

if there exists some polynomial time computable function f :-s
.

t.

for
every string w,

wEA) > f(w) -B

· The function f is then called the polynomial time reduction of A to B.

I
started on W

,
M ends/halts with just f(w) on its tape.

But wait What is a

> DEFN :

polynomial-time computable A function F : [19 is a polynomial-time computable function if some

Function ? polynomial-time T
.
M

. M exists such that for
any input w , when M is

· same idea as "computable function" defined in'Mapping Reducibility' notes ;

that there is a TM which can 'compute' f by outputting f(w) For any

input W.

&

The only difference is that now
,

we also take time complexity into account "f"

is only a valid "poly-time computable function" if M runs in polynomial time.

What is the point of this -> To allow us to talk about the relative hardness of problems
,
since we often

poly-time reducibility concept ? times don't definitively know whether or not a problem is "hard" (like

HAMPATH
,

SAT,
etc .

)

· With poly-time reducibility , though ,
we can still make claims like "A is at

most as hard as B"

-> If A is poly-time reducible to B ,
it implies thatIt is not possible that

A is "hard" Cala not decidable by a poly-time DTM) and B is "easy"

What do 'easy' and 'hard'
" IMPORTANT NOTE :

mean in this context ?
"easy" = decidable by a poly-time D . T. M

.,
aka in P

"hard" = notdecidable by a poly-time deterministic TM
,
ala in NP but

How does
poly-time reducibility

↑
- Thm : If A B and BEP

,
then A is also an element of P !

not in P.

Relationship between Ch . 5 & Ch . T ? -Ch . S was about proving whether problems are decidable or undecidable. Ch 7
.
8 is about

proving whether problems are 'easy' or 'hard' .

relate to the class ? -> Proofidea : We are trying to prove that if some T. M .

M can decide B in

poly-time ,
then there also exists some T. M.

N which decides A in poly-time.

-> The reasoning behind this Theorem is

pretty simple .
If A EpB,

then we

already know that there exists :

a . A poly-time TM M which decides B
, and

b .

A poly-time computable function Jaka 'reduction's which

maps A to B
.
aka

,
if wE A

,
then F(w) EB

-> We can construct a poly-time TM For A as Follows :

·

technically should say "Unlikely" N = "On input wi

instead of "not" because we

don't
truly know

,
but yk

2. Compute F(w)

2.
Run M on input FLW) and accept if M accepts. If M rejects , reject.

-> N obviously runs in polynomial time bk both stages run in poly-time.

language to be NP-hard ?

I
languagee AENP

,
A is poly-time reducible to B (ApB) .

What does it mean for a -DEFN : A language/problem B is NP-hard if
,
for all

·

a . K .a
.,

a problem Bis NP-hard if all languages in NP can be

reduced to B by a poly-time function.

· These problems are "unlikely to be in p" and generally very
difficult-sometimes not even solvable (decidables ! For ex

,

Aim is NP-hard.

What does it mean for a

language to be NP-complete? 2 . BE NP
, and

2. B is NP-hard (every lang in NP reduces to B

· These are problems which are "easy to verify" but "likely

How do P
,

NP
,

and ↑ -> DEFN : A language B is NP-complete if

difficult to solve
"

-> Basically ,
if any NP-complete problem can be solved

,
then every

problem in NP can be solved.

Decidable

NP-hardness/completeness
& NP-complete

relate to one another ?

P

no

1/1//wp-ward
What claim can we make about

-> MEX THEOREM : If AB and A is NP-hard
,

then B is

NP-hardness ?
NP-hard

.

-> Proof : To show that B is NP-hard
,

we must show that every problem

in NP reduces to it

·

Let C represent all languages in NP (CENP) . We want to show that

CpB
-> We know that A is NP-hard

,
which implies that there exists a poly-time

Function# S . t
. For every input w

,
if WeC then few) <A

-> We also know that Ap B
, implying that there exists a poly-time function &

5.t . For every input X
,
if xA then g(x)EB

-> Then
,
we can define a poly-time reduction h from C to B which does

the following : h = Given in put 2 :

2. let y = (2) (run Fon the input to h)

2.
Return glyb aka g(f(z)

How do we know that h

I
-> Because both F andg are known to run in poly-time & the

How do we know that this - We know that his a proper reduction bl
,
for any input

is a proper reduction ? · if xEC
,

we know that F(x)EA Since 7 EpA
· if F(x) EA

,
we know that g(f(x)) EB Since A EpB

· Therefore
,

if xt <
,

then h = g(f(x) must be in B

runs in poly-time ? ↑ composition of 2 polynomials is always a polynomial.

What theorem follows from -> Thm 7.36 : if A is NP-complete and AB for language BENP,

this one ? then B is NP-complete.

·

basically same logic as previous theorem.

·

if A is NP-complete ,
that means that all problems in NP can be

reduced to it. So if we can show that A
,
in turn

,

can be reduced to

B
,
it implies that every

NP lang can be reduced to B as well .

-> Thm 1
.
35 : In B is NP-complete and BEP

,
then P must be

equal to NP < P = NP

Poly-time Mapping Reductions V .
S. Turing Reductions

What is the "intuition" behind
-> NP-hard : problems which are at least as hard as NP

,
or harder

problems in NP-hard and
·

e . g. Arm
,

which is not ENP & even harder than NP

complete ?
-> NP-complete :

all of the hardest problems in NP

· All NP-complete problems are also NP-hard

->
NP :

problems that are "exactly as hard as Np"

What does poly-time reducibility ->

Saying "A EB" means that
, given a poly-time DTM for B

,
we can design

mean ?
a poly-time DTM For A.↑ · The DTM for A works by ,

at some point
, calling the DTM For B

What is the inution/motivation to -> the goal of this chapter is to prove that problems are hard.

use reducibility? -> In order to prove that a problem B is hard
,
we reduce a problem that

we already know /or strongly believe) is hard to it.

-> The goal is to
say

"B is hard because if B were easy ,
then A

would be easy Laka
,
if A can be shown to reduce to B) . But if /since we

believe A is hard
,

we should also believe that B is hard
.

"

-> The same idea we practiced in Ch . S ! E
. g .,

we showed that a decider TM

for E-m can be used to create a decider TM For Arm . But since we already

know that Arm is unsolvable & no decider exists for it
,

the proof is a

contradiction and we can then conclude that Erm must also be undecidable.

What is a Turing Reduction ? -> Proving that a problem A is reducible to B using a 'Turing reduction' simply

means creating a (poly-time) TM ALG for A which uses the poly-time TM

For B
, ALGB

,

in its computation.

· We can use ALG however we want ; call it multiple times
, negate its input,

etc... no restrictions
.

· This means we can get pretty creative/ clever with our reduction proofs.

->

Turing reductions feel like a much more intuitive way of proving hardness ; if A

is known) hard and a poly-time TM For B can be used to create a poly-time

TM For A
...

then obviously B can't actually be solved in poly-time (and is therefore

hard).

I
we design for A given ALGB must follow a very specific format

. Namely
,

How does a poly-time mapping -> To prove a pt mapping reduction
, you start W/ the same goal : Trying to design

reduction differ from a Turing a poly-time TM for A
, given one for B.

reduction ? -> However
,

the rules are much stricter. To
prove that A EB ,

the TM that

the TM ALGA must look like this :

ALGy = "On input X :

2. Compute y
= f(x)

2. Run All on y and return its output .

"

Where "f(x)" is our poly-time computable function ! (Seenotes

-> Unlike a Turing reduction
,
we can't do

any
other random stuff (like calling

* LEB twice or etc .). We are restricted to this template .

-> Naturally ,

a poly-time mapping reduction implies the existence of a Turing
reduction ... but not vice versa .

So which type of reduction
-Using a Turing reduction to prove hardness is NOT correct ... We must follow

should we use ? ↑ A EpB .

the strict format of poly-time mapping reductions when it come to
proving

that problems are hard - for ex
,

BENP-hard i
.
F

. F
.

AENP-hard and

Why do we have to use

· Several reasons :

poly-time mapping reductions ?
-> P

.

T
.
M

. reductions make a stronger statement about the hardness of problems

(so its just better practice)... they enable a more fine-grain of complexity classes
.

-> In practice ,
a lot of reductions made with the "Turing reduction" mindset

end up looking like/being poly-time mapping reductions anyway.

-> KEY REASON : In complexity theory ,
we believe that the class NP #COND

,

and mapping reductions distinguish between NP and coNP
,
While Turing

reductions do not (tangents.
What coNp ?is -> A complexity class which contains the complements of all languages in NP ;

i
. e

., languages where you can "easily" (in poly-time) verify that a given
input is not a member of a certain language.
· also equivalent to taking the poly-time WTM for a language in NP

and swapping the accept& reject states
.

mapping reduction ?

I
template gives a poly-time decider for A:

What is the mindset for -> To show ApB ,
the goal is to find the computable function f

,
which

creating/proving a pt lobriously) has to be computable in poly-time , such that the following

ALGA = "On input X :

2. Let
y

= f(x)

2.
Return ALGB (y) .

"

↑
-> Focused on creating the computable function f

,
more so than the decider im ALGA.

Ari Kumar COMP 155-002

Due April 17
,
202y Homework &

Page I

2.
a

a) if At P
,
then EP True

· if Aep
, meaning that a TM My decides A in polynomial time

,
we can show thatA is

also an element of P by constructing a poly-time TM N2 which uses M2 :

N2 = "On input wi

2. Run My on W
.

If My rejects
, accept.

Otherwise if My accepts
, reject .

"

·

N2 clearly runs in polynomial time because it only has I stage ,
which runs limitates My.

And since My runs in polynomial time
,

Ne must do so as well .

6) if AEP and BEP
,

then AUBEP
.

- True

· We can prove that A UB EP for 2 languages A
,
BEP by constructing a polynomial-time TM N ,

Let My be the TM which decides A . Let M2 be the TM which decides B.

Ne = "On input wi

1. Run My on W
. If it accepts

, accept .

2.
Run My on W

.
If it accepts

,
accept .

Otherwise
, reject .

"

·

N2 clearly runs in polynomial time because it runs for a polynomial number of stages,
and each

Stage can be done in polynomial time (we know that both M , & M2 run in poly-time because A and B are elements of Pl.

C) if AEP and BEP
,
then AoBEP - True

· We can prove that AoB EP for 2 languages A
,
BEP by constructing a polynomial-time TM N ,

Let My be the TM which decides A . Let M2 be the TM which decides B.

N
,

= "On input wi

2. Repeat the following for every possible way to split winto 2 strings WaWz ,
where

0 IW21 < (w) and 0 IWe1 < Iwl :

"Staged
2 . Run Me on We If it rejects ,

more on to the next possible division of wintown, e

3. (Else
,
if My accepts Wel run M2 on W2 .

If it accepts
, accept . If it rejects ,

more on to the next possible

division of w into W
,

W2
.

4. If w is not accepted after trying every possible split
, reject .

"

· We know that Ny decides the concatenation of A and B because it accepts a string wiff .
w can be

written as WeWy Such that WE A and We B .

·

Stage 2 runs in polynomial time since it utilizes My and My .
Additionally

, Stage 2 will be repeated at most n = /W)

times (because for a string w
,
there are I wi ways to split it into 2 substrings) . Since stage 2 runs in polynomial-time and is

repeated at most a polynomial number of times
,

we know that N2 runs in polynomial time
,
and therefore ArB EP .

Ari Kumar COMP 155-002

Due April 17
,
202y Homework &

Page 2

2. Show that P = NP implies that every language B in P
, except & and &

,
is NP-complete.

· If B is a language in which is not O or &
,

then we know that there are strings which are

in B as well as strings which are not
.

Let by be astring in B (byEB) and let by be

a string not in B (b2 B)
.

· To
prove that a language is NP-complete ,

we most show 2 things :

2) That the language is in NP .

2) That the language is NP-hard.

·

If P = NP and
every language BEP

,
then naturally all B are also in NP (which is

true anyways since we know for a fact that P is at least a subset of NP)
·

Therefore the first

part is proven .

· To prove that all BEP are also NP-hard
,
we must show that all langrages C in NP can

be poly-time mapping reduced to B Le . g . CEB for all languages CENP and all

languages BEP)
.

A reduction to prove this follows .

·

Assuming P = NP
,

then all languages CENP are also in p
,

and therefore
,
there exists a

polynomial-time TM ALG which decides every C.

· This is a computable function &which Maps C to B:

f(x) :

2. Run ALG
,

on X .

2. If ALG
, accepts ,

then output by
.

If it rejects , output by
· This function F clearly reduces C to B in polynomial time because the stages both run in

polynomial-time (due to the fact that CEP = NP) . Therefore
,

B is NP-complete.

Ari Kumar COMP 155-002

Due April 17
,
202y Homework &

Page 3

3. Prove that the given problem is NP-hard by reducing it to the given language.

Let the given problem be denoted as the language B
. Let the problem

C = ECG) /G is a 3-colorable undirected graph 3
,
where the input G consists of a set

of vertices/nodes V
,

and a set of edges E .

Each element of E is a pair of vertices in G.

To prove that B is Nr-hard
,

we must show that CEB . We must show that inputs w of

C can be mapped to inputs Wa of B such that WyEB if & only if we C
, by a polynomial-

time computable function F
. The reduction follows .

f(x) :

2
if x is not of the form <6) : return 0.

2.
Let T = 3

.

->

Let k = The number of vertices in G
.

-

Assign each mode in G a number 1
,
2

k
. Let the shorthand

num(v) denote the number that has been assigned to a vertice v.

5.
For each edge (U

,
v) in G

,
add a new "Student exam list"

2 num(us
,
num(r)] to an Array of lists A

6.
Return A

,

K
,

TC
.

· f works by taking an undirected graph G and letting each node represent an exam,

while each edge represents a student. The 2 modes that the edge is attached to represent the 2 exams

that that student has to take . In a given coloring of a graph ,
each of the 3 colors would represent the

3 time slots (thus assigning a time slot to each exam (aka model.

If G were 3-colorable
,
then

every student would be able to take their 2 excms at 2 different times,

meaning that a string encoding < A
,
K

,
+) would be satisfiable & this an element of B

.
If G were not

3-colorable
,

then at least I student has 2 exams occurring at the same time slot & thus <A
,
K

,
t

would not have a "solution" & wouldn't be an element of B.

· Additionally ,
we know that f is a polynomial-time computable function because it has a polynomial

number of stages, each with a polynomial # Of steps ·

The stage with the most steps is stage
5 -

it has a maximum of (n(m-1))/2 steps
,

where n = of Modes. This is clearly a polynomial

number of steps.

Ari Kumar COMP 155-002

Due April 17
,
202y Homework &

Page 8

3
.

* DTM ALG
,

for C
using a TM ALG for B could then be constructed as Follows :

ALG = "On input wi

1. Compute y = FLW (

2. Run ALE on y and output its output .

"

Therefore
,

we have proven that CGB and thus
,
Bis NP-hard.

I
path from mode s to nodet . 3

Part 3 : Complexity Theory
Ch7 : Time complexity 1. 5 : Additional NP-complete Problems

What is an example of a
-> Thm 7 .55 : CHAMPATH is up-complete .

polytime mapping reduction ? UHAMPATH = ECG ,
s

,
> /G is an undirected graph With a Hamiltonian

-> RECALL : an undirected versus directed graph :

Directed Undirected

0- ⑳
-L -

C ⑳
RECALL : What is HAMPATH ? - HAMPATH = ECG ,

s
,
E)/G is a directed graph With a Hamiltonian path

from mode s to nodet . 3

&
c For example, -L

L J
-

S
-v

t
> 7

>

-> Thm : we treat HAMPATHE NP-complete as a fact (don't worry

about the proof) . Meaning
· HAMPATH ENP

·

X HAMPATH For all problems XENP (Defn. of NP-hardness)
.

How can we prove Theorem -> We can prove that UHAMPATH is NP-complete by proving that

7. 55 ? 2)UHAMPATH ENP
,

and

2)
that HAMPATH Ep WHAMPATH (ThM 7 . 36)

How do we know that - This part is relatively easy to prove ; We know that UHAMPATH END by
UHAMPATH ENP ?

↑
an output in the form of UHAMPATH -

an encoding of a graph
(6

, st)

making a decider NTM that does basically the same thing as the NTM

For HAMPATH (see notes pg. 105) ; testing one graph path per

computation branch (of the NTM)

How do we show that -> We need to design a poly-time computable function f that takes an input in

HAMPATHUHAMPATH
? the form of HAMPATH-i . e .

an encoding
of a graph

(G
,

5
,
t) - and returns

such that

G has a ham. path from set if & only if

6) has a ham . path from set

How do we create our

I
-> We have to figure outnow to convert a directed graph

computable function ? With a Hamiltonian path to an undirected graph with one.

D . G . G WI set Ham - path

⑳-> ③x
S 24 ↓ G

W

↳
->f(x) :

·

If X is not of the form <G
,

5
,

7) : return O

cartomatic reject ; we can usually omit this step
·

Construct an undirected graph G'where
,

for each node U in G except for

sand : replacea with 3 nodes Kir
,

umid
,
and yout

·

replace s with S = sout and t with t = tir.

·For all modes u
,
draw edges connecting

in
to umid

·For all modes u
,
draw edges connectingrid to

out↑ · return the undirected graph (G
,

sout
,

tir) .

· for all edges &U
,
v3 in G Cala edges from u to v)

,
draw an edge

connecting
out

with Vir.

equivalent U . D. G
.

G

⑭-----
& Bsout = s

⑪ --
-> Therefore

,
we have proven that HAMPATH Ip UHAMPATH because we

can usef to create a poly-time decider N2 for HAMPATH :

Ne = "On input <G
,

s
,

ES :

2. Run f(x) on
y

= < G
,

S
,
> .

2.

Compute ALG on y & return its output .

"

CHAMPATH

How does this reduction
-> If UHAMPATH was @NP and was Ep (meaning it can be deterministic

Prove that UHAMPATH is ally decided in polynomial time)
,

then (by proving HAMPATH Ep

NP-complete & a member of UHAMPATH) We have we have shown that HAMPATH would also be

NP ? decidable by a poly-time DTM (N1) .
But since we know that

HAMPATH #P
,

therefore neither is UHAMPATH.

· And since HAMPATH is NP-hard & We reduced it to UHAMPATH
,

VHAMPATH must also be NP-hard.

I
-> But... there had to be an NP-complete problem that we originally began

Recap: How do we prove that -> By reducing them to known NP-complete problems (e . g. HAMPATH
Ip

languages are NP-complete ? UHAMPATH)

With
,
and which was proven who a reduction

, right ?

· SIMILAR to how Arm was proven undecidable by diagonalization,
and then Arm lovid be used to proce many other languages undecidable

via reduction
.

So what was the first -> SAT ! RECALL that SAT = E < Y > /Y is a satisfiable Boolean Formula 3
..

NP-complete problem ? · 5 strings in SAT : &N
,
V

, Xac - ---

,Xi i F2 ,,3
EX + = x z1x4 SAT

What is the Cook-Levin
e =

(x
, 1xz)v(x ,

nXz)E SAT

theorem ?
-> Thm : SAT is NP-complete.

->
One of the reasons that SAT is the o .

g . NP-complete problem is be it

basically represents/captures how computer algorithms work (logic↑
this class

.

statements !)

-> Proof : Must show that SAT ENP
,

and that all languages in NP

reduce to SAT Jaka SATE NP-Hard)

How do we know that -> Simple : create an NTM that
,

for a given input
,

creates a branch for each

SAT END ? possible way to assign each var . X
....

X ;
10 ICTRUE) or OCFAISE)

(2V possibilities/branches)

How do we know that
-> For a lang At NP with a decider NTM N.

SAT is NP-hard ? see textbook for more details ; not super important to know for

↓ hat are some definitions · literal: a variable (or its negation) ,
c . g .

X
,,

"
2

,
F2

,

Y,3 ,

%
,

are

pertaining
to boolean Formulas ? all literals

.

· clause : an expression consisting
of several literals connected with

OR(V) symbols ,
e .g. (X

,
V2 VEgVXj) is a clause.

·

cnf-formula : A boolean Formula comprised of several clauses

connected with AND (h) symbols ,
e .

g.

(x
, VxVVxg) & (xgVYgVxz]d ...

What is 3SAT ? -> A special case of SAT where the boolean Formula is comprised of

a Crf-formula where each clause has exactly 3 literals. For ex :

(x
,
V Vxz)n(TyVxyVx)

How do we show that

I
->

By showing that SAT EP3SAT !

3SAT is NP-complete ?
-> We need a computable function that takes an input to SAT and converts it to an

input to 3SAT (s .
t . F(x)EYSAT i .

F .
F

. xESAT)

-> Sketch example from class :

e = X
, VizVTzvX ,

f(t) = (x
, VEz -z)(EVTzVXy)

What is the language
-> For an undirected graph ,

a "vertex lover" of that graph is a

nodes. For example ,
if G =

D-②

VERTEX-LOVER ? ! subset of modes/vertices where
every edge in G touches one of those

&D
,

then S = G2
,
3

,
03 its a vertex cover bin

every

edge touches either v = 1
,

v = 3
,

or v = & Cor both

but S = E1
,
23 is not

.

(a+ most)

ve = &(G ,
1) /G is an undirected graph that has a k-node

vertex cover (i . e
.,

J
a v

. C. Subset S that has K elements)
.

3

What is the language
->For an undirected graph G

,
an "independent set" is a subset S of modes S

.
t.

Independent-Set ? none of the edges in G connect 2 of the nodes in the subset.

·
i

. e
.,

none of the modes in S are directly connected to each other.

-Fur,
then S = Ea

,
2

,
3

,
wh g an ind Set ble for

every

edge of GEu
,
v3

,
lueS Vv-eS) is true.

i
.
e., there are no edges connecting v = 1

,
2

,
3, or 4 to one

another .

-> IC = <G
,
k > /G is an undirected graph that has an Independent Lover

subset with (at least) K elements
.

3

How do we show that
-> Let's assume (for now) that we know & have proven that VCENP-HARD.

IS is NP-hard ? We can show that IS ENP-HARD by provingthat VC EpIS !

-> A computable functionf that reduces inputs to VC into inputs to IS :

f(G
,
k) :

1 · Given an input of an undir - graph G and an intk
,

return

< G
,
n- K) where n = of nodes in G.

How does this function
-> If a < G

,
1) Ev . C

.,
that means that for every edge

E = <u
,

v)
, either

work ? U or v is an element of the "vertex cover subset" S
.
And that IS1*K.

-> To produce the set S' of elements which are an independent set of G
,
we

simply choose all the modes not included in S .

Therefore
,
the length of S

would be (total nodes in 6)-(# of modes in SC
.

And since IS1 = K,

1S' = n - k.

I
-> See textbook/lecture for the rest idk

But wait ... is VERTEX- > Yep -

we can show this by proving that 3SAT EVERTEX-COVER
LOVER even NP-complete? -

To map boolean formulas in the Form (a VbVc(N(cVdVe)N(Vavz)N ...

way to convert the variables & clauses of the Formula
.

↑
into undirected graphs with (or without vertex covers

,
we must Figure out a

I
-> So Par

,
we've defined hardness by :

Part 3 : Complexity Theory
Ch8 : Space complexity 8.I : Savitch's Theorem

1.

Decidability : Whether a problem can be solved in the First place

·

problems like Aim and HALTIm can't be solved by a computer
2.

Time complexity : How long it takes to solve a problem.

·

problems like "Pr
.
S

.

NP" Jaka
,
does using mondeterminism buy us

anything in polynomial time ? Does it helprs solve more problems ? Is

P = NP ?)
are simply unknown ! Nobody knows the answer.

Now
,

we add space complexity to the list.

What is space complexity ?
-> Considering/classifying computational problems in terms of the amount of

space Lake memory) that they require.

-> Time & Space are 2 of the most important considerations when we seek
-

practical solutions to many computational problems.

-> V . Similar (in terms of how we understand evaluate it) to Time complexity
(cn .1)

· We will again use deterministic TMs as our standard model for

space complexity ?

↑
Let M be a deterministic TM that halts on all inputs (i . e . a decider).

measuring & comparing
the space complexity of problems.

What is the formal defn
.

of -> DEFN :

The space complexity of M is the function F : N-N
, where fin)

is the maximum number of tape cells that M Scans on

any input

of length n.

·

If the space complexity of M is fin)
,
we say that"M runs

in space fin)
.

"

What if M were a
-> Then we define its space complexity f(n) to be the # of tape cells used

nondeterministic TM ? by the longest/largest branch-same idea as with time complexity.
· The maximum space used by any 1 of all the branches.

RECALL : What is big-o ?
-> aka asymptotic notation ; estimating complexity by disregarding smaller

crefficients in a given F(n) .

·

For EX
,

if F(n) for TM A = n + n + 2
,
then O(f(n)) = n2.

What is SPACE(F(n)) ? -> A space complexity class :

SPACECF(n)) = ELIL is a language decided by an O (F(n)) -

space DTM 3.

·

i . e
.,

the space-complexity equivalent of TIME (FCC) (RECALL!

What is the relationship

I
->

space is more powerful than time - because space can be reused
,
while time cannot.

What is NSPACE (f(n)) ? -> A space complexity class :

NSPACE (f(n)) = ELIL is a language decided by an OLF(n)) space

nondeterministic TM . 3

·

space-comp. equivalent of NTIME (F(N)

between time and space
-> If a problem is decidable by a t(n)-time STDTM N2 ,

then Ny

complexity ? also runs in at most thus-space ! It cannot take more space than it

Fact 1 : TIME (tin)) - SPACECEN))

Why is space stronger than
- RECALL that if the TM N2 for a langrage A runs in tn)-time

,
this

time ? means that it takes at most OCt(n)) steps to compute an output.

-> Within Octcn)) steps ,
Ne can't possibly use/look at more than OCt(n)

cells ! Since each Step ofa im involves either :

·

moving the tape head left by one cell,

·

moving the tape head right by one well
,

or↑ does time.

A- SPA(t(+ (n))

92 82993

2 - - 2-]

·

doing suthn else & not moving
the tape head at all .

-> Therefore
,
if AETIMECLINIC

,
then

1111111/

What else is true about the
-> If a TM runs inLinear (n) Space , then the maximum amount of

relationship between space & time it can take is 20 steps . AlA

time complexity ? Fact 2 : SPACECEn)) <TIME (2Octims
-> Proof : Recall that If a TM is a decider

,
it never loops ; it goes through

a sequence of states & steps but it never repeats States/sequences (b

then it wouldn't be a decider since its stuck in a loop).

· Unlike DFAs
,

for ex
,

which can -

contain "loops"
,

e- g. &

-> For the proof ,
let's consider a decider TM M which has linear (F(n)) space.

-> Since the # of tape cells for M on input length n is bounded
,
this means

that the number of possible configurations i. e. possible combos of

& current state
,

current tape head location
,
current contents of tape]

that M can enter is also bounded :

Specifically ,
for an input of length

n
,

M has (roughly) at most I configurations.
->

And we know that
,
since M is a decider

,
none of these "configurations" get

0(t(n))
repeated Laka no looping) .

Therefore
,

M will take at most [steps

to compute . AKA
,

M runs in 20Ltns) time.

a space-complexity

I
· RECALL that SATENP and NP-complete .

It does not (as Far as

What is an example of -> Lets show that SATE SPACE (n) ; aka
,

SAT runs in linear space !

analysis. We know) run in linear time .

2
not even

-> Proof : Let My be a TM for SAT
.

Polynomial ! na

M, = "On input Y
,
where I is a boolean Formula :

2. For eachfuth assignment to the variables X
, ,

. .

. ., Xm of Y :

2. Evaluate the status of Y (the formula on that assignment .

3. IfY ever evaluates to 2 Laka TRUE)
, accept . If not

, reject .

-> M. clearly runs in linear space because each iteration of the loop (in steps 1-2)

can reuse the same portion of the tape.

&

↑ -> All that the TM needs to be able to store at one moment is the current assignments

(to each variable)

· Since there are m variables (bc "X
,... Xm")

,
My requires at most M tape

squares at a given point in its computation ,
aka 0 (m) space.

-> And Finally
,

for a given input to Y (e . g. a boolean formula (of length 1
,

the

* of variables m which require assignments can't possibly be more than n lit

would honestly prob have to be less
,

since boolean formulas also need operator symbols in

them)

· Therefore
,

M
,

runs in maximum n tape squares
,

aka 0 (n) space !

What is the class
-> The class of all problems which can be solved in polynomial space,

PSPACE ? written PSpAce = USPACE (nk)
,

aka the union of the classes
-

SPACE (n2) U SPACE (n2) U ... SPACE (n18)
...

· RECALL : this is the space complexity equivalent of the class P ;

the class "p" refers to all languages solvable in polynomial time.

What is the class
-> NPSPACE = UNSPACE Cn')

K

NPSPACE ?
-> The class of all problems which can be solved in polynomial time by a

Nondeterministic TM.

· RECALL: Sort of the space complexity equivalent of the class NP

RECALL: What is the relationship

I
-> KNOWN/proven Fact : PENP (P is a subset of NP(

between the classes P and NP ? ·

any lang X in P has a DTM that runs in poly-time . Obviously ,
if a DTM can

calculate X in poly-time ,
then we can make an NTM which does the same thing

.

-> UNKNOWN : is PINP (P is a proper/strict subset of NP (

· "proper subset" meaning that there are elements in WP which are not in P.

-> UNKNOWN : is P = NP ?

· if PENP
,
then PENP (proper subset)

.

This then implies that using nondeterminism

des give us "more power" e .g . a larger scope of problems that can be solved in poly-

time
,

than if we were to restrict ourselves to determinism.

· if P = NP
,
this means that P is not a "proper" subset of NP... all problems in NP

are also in P and viceversa .

This then implies that the power of DTMs and NTMs to

What is the relationship -> Unlike with time complexity ,
we know for a fact that PSPACE = NPSPACE !

between PSPALE and NPSPACE ? ↑ solve problems in poly-time is equivalent.

·

Nondeterminism does not enable us to solve more problems in poly-space than simply

using determinism.

·

Any lang decidable by a poly-space NTM is also solvable by a poly-space DTM

(and vice versa)

What is Savitch's Theorem ? -> THM : For all functionsf whereFins In

Laka
,
the im has at least nt

space for an input of length n ; basically saying ,
for

any TM

that has enough space to put each in put symbol X
,, Yz Y n

Onto a tape square t
,tz... th

N SPACE (F(n)) & SPACE (82 (n))

What does this theorem mean ? -> Any NTM that solves a language A in F(n)-space can be converted into a DTM

that solves A in F2(n) -

Space

·

For ex
,

if NTM By Solves A in F(n) = no
space ,

then there exists a DTM

B which solves A in F2(m) =
20

space

·

Basically paying the 'cost of a polynomial factor of 2.

->
Since

squaring a polynomial still results in a polynomial (no and (no are both

polynomials)
,

this implies that PSPACEE = NPSPACE !!

What is the proof that
-> Thm : NPEPSPACE

,
ala

,
all problems which can be solved in polynomial-time by a

NPIPSPACE ? nondeterministic TM
,

can also be solved in polynomial-space by a deterministic

TM . Cor, by proxy ,
amondeterministic TM as well

How does Savitch's
-> Savitch's Theorem already proves that NPI PSPACE because it tells us that

Theorem already prove this ? PSPACE = NPSPACE
,

and

-> And "Fact 2" (pg125) says that a problemcannot take up more space than it does

time
,

which then implies that NP INPSPACE.

want to prove it directly ?

I
We can do this by showing how to construct a poly-space

DTM For a given

Okay ,
but what if we

-> Proof : our goal is to show that all problems in NP are also in PSPACE.

(without Saritch's) language in the class NP.

-> RECALL : SAT is our favorite NP-complete problem ! If a language is

WP-complete ,
this means that all problems in NP can be reduced to it.

-> If a given language AENP (known)
,
this implies that it can be poly-time

reduced to SAT (e . g . "A ESAT") ; this is a given.

· if A Ep SAT
,
this means that there is a computable functionf which

takes in A-Format inputs ,

and outputs SAT-format strings S .t . , string
We A if . F . String F(w) - SAT.

-> Given this
,

a polynomial-time deterministic TM ForA computes as follows :

ALGA = "On input n >:

2 .

Run
y = F(x) on input x =< m >

2 .

Run SAT'S TM
, ALEsAr ,

on input y . Accept if ALGSAT

accepts. else reject .

"

How do we know that ALG
-> Let's analyze it ! We know that stage I runs in poly-time becauseE is↑
-> We know that stage 2 runs in poly-space because it calls ALG so-and ,

as

runs in poly-space ? a poly-time computable func .
& given "Fact1"

,
we know that all poly-time

↑Ms are also poly-space TMs . Therefore stage I runs in poly-space.

we proved earlier (pg . 126)
, ALGsa+ runs in linear O(n) time !

-> Therefore
,

A is an element of PSPACE !

What Theorem is proved
-> Thm : if A FpB and BEPSPACE

,
then AEPSPACE !

by this proof ?
· EX: What we just did ! SATEPSPACE and A Ip SAT

,
and we

just proved that HEPSPACE

RECALL : How does the use of -> Recall the theorem that states that

a multitape TM affect time any tins-time I * an O(t2(n))-time
can be

complexity ? Mutitape DTM converted to Single tape DTM

Why?
-> For

every step that the MTDTM takes on its <# Of tapes ,
the STDIM just

takes (at most) tin) steps to replicate each single step of the MTDIM.

(t(n) steps to compute MTDTM) x (t(n) steps per step that STATM replicates) =

at most th (n) Steps

why?

I
-> Since space is measured in Of tape cells used

, the STDTM uses the

How does the use of a multitape
-> Thm :

TM affect space complexity ? any timb-space I * an OCtn)]-space
can be

converted to
Mutitape DTM single tape DTM

same amt. of space as the MTDTM because it copies all the squares

of each of the MIDTM's tapes.

relationship between all
-> NPENPSPACE

complexity classes discussed
·

Why ? Fact I" (pg123) ,

that TIMECFCnS] & SPACECFINs

so far ? -> PSPACE = NPSPACE (Savitch's Thm
.)

-> (PSPACE = NPSPACE) I EXPTIME

SUMMARY: What is the

↑
-> PENP--just discussed

~So

· Why ?" Facts" (pg 125)
,
that SPACE (t(n)) < TIME (2014)

· EXPTIME = UTIME (20ncks) for all integers
-> In whole : PCNP(PSPACE : NPSPACE) -EXPTIME

· We believe that all of these "I" are actually"" (proper subsets) ... but no

one actually knows. EXPTIME
7 C--complete

-> What we believe : · NP-complete : the "hardest problems in· NP" ; All languages in NP are at most as

hard as an NP-complete lang. .
An NP-comp.

lang. is at least as hard as every lang in NP

->
UNKNOWN : is PEPSPACE or is P=PSPACE ?

-> KNOWN : P EXPTIME

· There are problems solvable by exponential-time DTM which are not

solvable by poly-time DiM.

What does it mean for a language -> DEFN : A language B is PSPACE-complete if it satisfies 2 conditions :

to be PSPACE-complete ?
2. BE PSPACE

2. Bis PSPACE-hard ; all languages in PSPACE are poly-time reducible

to B.

-> PSPACE-complete basically represents The hardest problems in PSPACE . They are

all also even harder than NP-complete problems.

What is the relationship between -> thm : For
every language B

,
if BEPSPALE-hard ,

then B is also ENP-hard !

PSPACE-hardness and
· PSPACErhard problems are harder than NP-hard problems .

Np-hardness ? -> For ex
,

SAT can be
p . t . reduced to TQBF .

I
-> existential quantifier : 5 "There exists"

What is an example of a -> TBQF
,
a similar problem/language to SAT ; involves bookan formulas - except now

,
we

PSPACE-complete problem ? include quantifiers. T
. Q .

B
.
F

.
= "True quantified boolean formulas"

-> universal quantifier : V "For all
"

What is a fully quantified
-> A quantified boolean formula is a formula v/ boolean vars that has quantifiers.

boolean Formula ?
· The possible values for each variable is 20

,
13

,
where O = FALSE and 1 = TRUE

.

· For ex : Jy[(xVy] & (* V]] - "There exists a value for
y such that

theStatement" (xVy) & (X Vi)"evaluates to true .

-> A fully quantified boolean Formula is one where each variable in the Formula appears

in the "scope" of at least one quantifier. e
. g ., every var gets a quantifier assigned to

· For ex : The ex above is not fully quantified ,
but could be made so by adding a↑ it

quantifier for X
: Ex2 Ex 5 y [(xVy) N(XVy)] -> "For all possible vals of

* there exists some value for
y S . t . [...] evaluates to true

.

Okay ,

so what is the language
-> TRBF = E(Y) /Y is a true fully quantified Boolean Formula

.
3

TQBF ? · basically , given an input like the one above
,
TBQF accepts it if its true

.
2 . g .,

for

VX
, meaning

for both X = 0 & X = 2
,

can we find an assignment for y
S . t . the

given statement evaluates to true ?

->

String <EXI> ETQBF
,
because UX = Ex = 0

,
x = 13

· if x = 0
,

lex y = 1 : [(false v true) & (Fatse or true)
- -

[(Trues & (Trues] = TRUE

· if x = 1
,

let
y

= 0 : [(true false) n (Frie or Fase)) = TRUE

Therefore <EX1) = True

-> Thm : TBQF is PSPACE-complete .

· TBQF is to PSPACE as SAT is to Np !

·

all problems in PSPACE can be reduced to TQBF.

How do we prove that TQBF -> We have to show that TGBF is in PSPACE
,

and t all problems in PSPACE can be

is PSPACE-complete ? reduced to TQBF by a poly-time algorithm .

-> Proof : TEBF is in PSPACE
.

Let M
,

be a TM For TQBF .
M

,

= "On input 4 :

2. If I has no quantifiers ,
scan 4 to see if its true. (Basically doing what

SAT does)

2.
Else

,
if y = 7 x 2 ...] :

29 ·

Set X = 0 and ron M2 on Y

2b .

set X = 1 and run My on Y

2
If either returned true

, accept .

I
3

set x = 1 and run M
,

3 .

If y = V + 2 ...] :

3a -

Set X = 0 and run My

↑
"If bet return true

, accept .

"

in poly-him
"If

you can Solve SHT
, you can solve every problem

in NP (in poly-time)

"If
... TQBF,.. -- in PSPACE

, including No

problems !

Final Exam Review

Language Relationships : Computability Theory Recognizable
Decidable

-> Regular : DFAs
,

NFAs
, Reg · Expressions ⑳Contexture->

Context - Free : CFGs
,

PDAs

-> if A and B are both CFLs
,

A RB is NOT necessarily a CFL

-> ALL Regular Languages are ETIMEIn) (decidable in linear O(n) time) . Why? Just have the TM imitate the lang's DFA.

-> ALL Context - Free Languages (and thus reg . tool are E the class P
.

Language Relationships : Complexity Theory
-> The class P : problems solvable in poly-time by a STDTM --- YTIME Ink)

-> The class p : "

by a STNDTM ---

~ NTIME (nk)
K

-> The cluss PSPACE : problems solvable in poly-space by a SiDTM ... Y SPACE (nK)

-> The class NPSPAC : "by a STNDiM ... YNSPACE (1)

-> P is not necessarily equal to NP... its unknown. Because one day,

we might find an alg to solve up

problems like SNT in poly-time , deterministically. But we think that PGNP

-> PSPACE = NPSPAL3 ! Specifically ,
a NDTM that takes F(n)-space can be converted into a DTM

thattakes F2(n) Space (Saritch's Thm
.
). But since both and2

are polynomial ,
all NPSPACE

problems are also in PSPACE.

-> Time v . S. Space :

· problems cannot use more space than
they do time. If a TM runs in fin)-time

,
it runs in at most f(n)-space.

Therefore
,

P
,
NP both I PSPACE Land thus also NPSPACE

· REVERSE : If a TM runs in fans-space ,
it runs in at most 20(fin)) time

e . g., TM M
,

needs & squares to compute (F(n) = 1)
.

The maximum time it can take is 20 = 16 steps.

-> PINP /PSPACE = NPSPACE) EXPTIME
, ~ TIME (2n

*

)
,
al a problems

=> k

solvable by a DTM in exponential time.

->
= We don't actually know if these are subsets .

We don't even know if P = PSPACE ; its possible . Just like

its possible that P = NP .
And its possible that PSPACE = EXPTIME.

-> known : P EXPTIME .
Which implies that at least one of the red-highlighted "subset" symbols is true . Be there

has to be a separation between P and EXPTIME at some level.

EXPTIME
· NP-complete : the "hardest problems in NP" ; All languages in NP are

at most as hard as an NP-complete lang .
An NP-comp . lang, is at least as

hard as every lang in NP soNP

·

PSPACE-complete : same as above but replace "NP" with "PSPACG"-

-> All languages in NP (and thusp)
are decidable

·

If a lang is undecidable,

it cannot be in NP .

Part 2 : Automata and Languages
-> Regular Expressions : A = Egood ,

bad 3 B = Eboy , girl3
· AoB = E good boy

, goodgirl , badboy , budgirls
·

A
*

= Egoodgoodbad, goodbad ,
bad good ,

as

-> 1001)00
*

= 0000000
,

100 , 000
,

00
,

10
,

0
,

1

-> A = Sc/10133 > (& ve) · (& +2) · (& vS)

-> B = Sw1w has 000 as a substring 3 & (200)
%

00000 11 v01

-> c = B
... w does not have "000" as a substringa (1UOLU001) (2v0000

-

-> NFA-to-DFA : make every possible subset of States in NEA
,
a state in the DFA

.

NFAN
,

Q = 290 , 9, 2
2

3
... DFAD

,
Q1 = E E . 192 , 93

,

9
, 92

,9 .93 ,29 ,
9

,429. , 03

-> DFAs : S : Q x& + Q

-> NFAs : 8 : Q x&- P(Q)

-> PDAs : "An NFA with a stack"

· At each step of computation
, you can either push (add symbol to stack)

, pop (remove top symbol) ,
or replace

Laka pop-push
· S : Q Es T

E
& P(QXTzS

↓ ↓
↓

corr , state curr · in put Symbol being symbol currently at top
↳

given the specified curr . State
, input

,
and stack

read when transition of stack

- curS symbol ,
this is the power set of possible (state to

more to
,

action to execute on stack) combos.

& zabe

fa , be

a
,

b- + C : If the next input symbol is a :

· pop b off the stack (ifb = 2
, pop nothing

⑬ ·

replace it with c
,
e .

g . push Onto the stack

Lifc = a
,

push nothing
·

if a = 2
,
nondeterministic "automatic" more

"read a, replace b on stack with <
"

->

Pumping Lemma :

1
. 1511p

2 - (xy)[p
3.

1y1z1
- -

xy" zEB

Turing Machines
,Decidability , Reducibility

Turing Machines

-> A Turing Machine is a 7-tuple (Q
,

S
,

4
,

8
, 90 , Eaccept ,Project) Where :

1. Q = set of states
2. S = input alphabet

3 . M = stack alphabet

1. S : (Q +2 + 4) = Q + + + Q + 4 x &L
,
R3

S
.

Go : Start State

-> STNim : S : Q +T -+ P(Q ** + &L
,
R3)

-> Multitape , single tape ,
nondeterministic

,
deterministic TMs all recognize the same set of

languages .

Decidablity
-> Lang. is Decidable if Ja im which

always halts (accepts or rejects) ; never loops .

-> EXAMPLES :

· Adea = SB
,
w > / B is a DFA that accepts w3 (Algorithm : run B(w) & return it

·

Anfa
,
leg

, par ; Edra
,
nea, FG,ex

= GJM > / M is a [m ... comp.] and (CM) = 3 :

EQ
NEA

,

CFG ,
exc.

-> Undecidable Languages : -guagePro,realization
-> A language A is decidable i

.

F
. F. A andA are Turing recognizable

Aim

· Aim is NOT recognizable
E

+m A
+m

= E
+M

HALT
im ArmEHALT im

-> The complement of a decidable language is decidable.
EQ

+m Eim EQTm
Reducibility

- General Reducibility AB : Constructing a decider TM for A that
E

+m Aim Em
uses a (given/implied) decider TM for B in its computation.

· THM : For A =B
,

if B is decidable
,

than A is decidable
.

·

THM : If A is known to be undecidable & you can prove that A = B
,
then it proves that B is undecidable.

· USE : To prove that a lang is undecidable
,

assume for contradiction that it is
,
& show that

Aim ELANG

-> Mapping Reducibility #EB : Constructing a decider TM for A that runs a computable functionf

on input (a)
,

and then calls the TM For B at most once
,
to run TMy on the string outputted

by F.

· computable functionF : takes in an input "W" that would go in A . Outputs a B-format string
"F(w)" St . F(w) B i

.

F
.

F
. NEA.

·

THM: for AEB ,
if A is not Turing-recognizable ,

Bis not T-R !

·

USE : To prove that a lang isn't TR
,

Show that Arm ELANG
-> If AEB,

it does NOT imply that BEA
-> If A decidable

,
A and decidable

Time complexity
-> Time defined as O (F(n))

,

the MAXIMUM (big-O notations # of steps a Th could take to

decide a problem with an input string of length2
-> The Class P : & L/2 is decidable by a polynomial-time STDTM3 ~ "easy" problems

· EX : PATH = &G
,

S
,
E)1G is a directed graph w/ a directed path from nodes to mode t

.

3

·

Includes all context-free languages
-> The Class NP : EL 1 L is decidable by a polynomial-time STATM3 OR

~ "hard" problems
& ↳15 a poly-time Verifier For 23

· Verifier : ATM V that takes an input <w
,
> where (W = a string input to 1) and (C = a certificate e.g.

"proposed Solution" proving that WEL) .

V basically checks if the given & ,
which is usually created based on

What w is
,

e .

g C(w)
,

is in the lang. .

(or not . Aka

7 = Ewl - a string c S
.t. Vaccepts < w

,
2)

.
3

· EX : HAMPATH Clike PATH except "Hamitonian path" ,
SAT

-> Relationship between Time & different types of TMS :

·

Multitape F(n) - time TM & Single tape O(tinK) - time TM

· t(m)- time NTM
3 70CtIn) - time DTM.

Meaning ,
all languages in NP are solvable by a DTM in exponential time .

Moly-timeReducibility
-> Poly-time Reduction A EpB : Same as mapping red

,
but must be computable in poly-time

a)
·

The method of a p. t
. reduction AIpB is to assume that B has a poly-time Dim

,

"
create a reduction fom

A-elements to B-elements
,

and "Use the reduction func
.

& the assumed TM For B to create a poly-time

DTM For A .

-> USE : To prove that problems are hard
. Given a lang A that we know is NP-complete ,

we can prove that B

is NP-complete by showing AB : Assume" that Bis easy (Poly-time DTM)
,

reduce A to it. Since

We alr know that A isn't easy ,
our "assumption" is proved false

.

-> THm : If AFB and BEP
,

A is also EP
.

-> NP-hard : A lang.
BisNP-hard if AFB for all languages AENP .

·

Every lang, in NP can be reduced to B in polytime .

·

Meaning ,
if we had a poly-time DTM For B

,
then we'd be able to construct a poly-time DTM for A.

·

NP-hard langs aren't necessarily ENP.

For ex
,

Aim

·

"problems which are at least as hard as WP
,

or harder.

-> NP-complete : A lang B is NP-complete if it is NP-hard
,

AND BENP
.

All NP-complete are also

NP-hard
.

·

"all of the hardest problems in NP .

"

-> THM : If a lang .

Bis in NP and lang A is NP-complete ,

then if AEB ,
it proves that BisNP-complete.

· EX : HAMPATH Ep UHAMPATH proves that UHAMPATH is NP-comp .

-> Examples of NP-complete problems :

Language Proof

SAT The 0 .g.

HAMPATH idk

UHAMPATH HAMPATH EP UHAMPATH

3SAT SAT Ep 3 SAT

VERTEX-LOVER 3 SAT &V-

IND . -SET v - 2 Ep IND-SET

Pumping Lemma

I
-> A way to show that a language is not regular

Review Session Notes

WFAs ->

every DFA is automatically an NFA

-> if lang. A is reg ,
I an int p S .

t.

·

For all strings in A
, they are at least length (S11p17

· Vs
,

there is some way to split into s =

Xy2

S .t . ly142 and Ixyl P ,
S . E.

* in +E
, (xyctA)

-> To
prove : Find a string in the long

for which one y they conditions

isn't satisfied.Iassume for contr .

that A is regular. let the p . 1 . be p = 3

If it were regular
All Strings SA would sat . the conditions

.

let S = 000111
. Possible splits :

10 000111
; only possibility that doesn't violate condition

= =

20000111 :
|
xy| p

55

·Xy52 Fornoice I = 00 000 I
... not in A !

-> For exam : when we decide a B ,
we can't just pick anys .

We needs to

be a string termsof p so that it works no matter what p is.

· Bic we are "assuming" what p would be .

a CFG can generate
PRACTICE EXAM · way . & non very lang . --

all 25 are reg ,

Twe DFA can only gen.
no +

v .
v .2) ae ~ F

. True

~ b . True
~ g. Nobody knows

a

reg , lang
. 3AT is NP-complete ...

if its in P
&

W C . True
~ G .

True all
languages in NP are in P

.
So

,
True?

r d . False
~

i

. Nobody knows

ve . False V j. True PENPIPSPACE LEXPTIMS

↓ d ↓ ↓
a b

↑ a
, b ab,b a

, b ,, d
,
e

20r0"1" or10/m .
n = o

000111 a b 0011

000111 a a a bbbb aabb

R, RRz SOL :
S - A

R + 0R
,
115 A - 0A1/9

Ry + JR31/E

3NFA For language A = EwIwends in 02 or 103
.

-=
T
2 ⑨

↳

5
%

= 0
,

01
,

10
,
110001

,

tilo1110
,
a BEnfera: given input to B

, output in put to EDFA
-> DFA B always accepts ? "S long as input is correct alphabet. So rejects any

DFA encoding
which d

.
n

. accept
,
like "1101" for ex

.

If < b > rejects "Oll01"
, output < A) ,

where A = a DFA that accepts

strings ending in 1.

· if < b > E B
,
then a accepted by <b)

,

which means that the st
.
State = accept state!

ANS : A computable function of that reduces B to : F =r on input A :

1. Let Al = a DFA with one state
, 9,

no accept states
,

and transition functions

like 30 : -10 , 2

2. If < A) were an element of B
,
it would accept the empty stra

,
Since EC

.
If the

start state g ,

of B is equal to the accept state
, output A

3 ·

Run <As on

2. CFGs for the following languages ,
where E = a

,
b, 3

a) A = 2ab"(isj203
a aabb and a abbbb

b) B = Ea"b*
<(i= j or i = k where i

,j ,
k203

i = ji i = 1 :SR ,
+ a (aR ,)aRz naabbbcc aaabc

R
=

- aRyb)E
a abb ca2 aa bbbbca

anabbb i acc R
,

+ R
,
c)2/Rz

R
,
+ R

= Rz/E R2- bRz/E

R2 - aRzb/S

2abczL

a a b b222L-MoreiSRs - cRs1E

990XXXXy010/ NFA :. none arrows for a symbol
- allowed

010 , 1000 , 010
· mult . persymbol allowed

-

0 .

9
->&

o
0

.
2 to
②

·sig 260222

o
1

·↑
⑨

Ca
*

* A = 50""1 i
, j2 0 and i/j is an integer 3

· For ex
,

00000000011I

-> Assume contrary
...

His reg. .

A satisfies the p . l .
Let p be the pumping length given by the

lemma . Choose I to be the string O2pyp

(For ex
,
if p= 3 then 5 = 000000111(

->S is obvia member of Abk i = < p , j = p and /j = p .
Its also obvi at least length p .

->The p . 1 . then garvantes
that I can be split somehow into X

, Y ,
2 S . t .

the 3 Lord are

satisfied : 201y11228 (xy) = p
3)

xy"zEA for int i

We consider all possible ways to split I into X
, y ,

2 to show that this result is impossible.

1 y consists only of 1s--not possible ,
because if s = 02010

,thenleast 2p

symbols snow up bore first "I"
, meaning Lord 2 viol ... Ixy/ & p is False

-

X

20

You cond
. 3 is not letb ,

then by = 00,000,000 111 isTEA
.

in Sy
,

i = 8 and j = 3
,

but 3 not an int
-

X Y Z

3
y has Os and Is-this imm

. Viol . Con 2 bla first "I "not appear
until after 2p symbols

so xy would have a minimum length of 2p+ 1
. (2p +1) P

Thus ,no reg . lang.
-

6) if A B & A not ToR
,
then BrotT- M

-

By reducing AimEB , proves
M

that B not T-R Arm = SLMD> /M is a TM and M

-> ALG : on input <M
,
W) : doesn't accept wY

↑ if <M
,
w> -> Fir

,
then output shid be wiS] (M

,
w) >

->

then it means thatM doesn't accept w

&(m
,
wi

· <M
,
w)E #im ... Output is 11 I

202m
,
2) #Aim ... otpot is ly where yom W

-x - Is
G :

D input =

G' = complete graph D
& <G

,
1)

on 8 vertices

-> all 8 (0-1/2 = % undir. edges

6 :D
NI return 68
③-

This doesn't work?

backwards does work ?

SO
. if <WL EB ,accepts everything ! output <Wis where w =

F

.

· if
< W > XB , w could be

any other DFA
. output some DFA which accepts

somethingLeg-not empty) would still not be the empty lang
right?

8 .

output
A

&V 1
"

In 20 3 000111

8 : Qx &
a

x T2-P(QxTa)

-90, %
&

fr ,

02a

⑯"aseeof Doea

28 3SATEND HPEND
...

If HP is in P
,

So is JSAT

b< HP is NP-comp

D
38 3 SAT in P

, 3SAT NP-comp but NP-hard doesn't nee mean -> NP

↳se

C USAT is NP-comp In
3) "From 3SAT to A

+ m " "From 3-color to STUDENTS
"

= BCOLOR ESTUD=

35A + =A+ m

BSAT : (x
,
VY2Vx)n(xVxVx)h ...

MIDTERM

a) True b) it c)TdbF eSF

280 I O 0010101101

&Fi
·
↳z

⑳ ③ no
36 Yes E

,

b
1)

is a
a

9
o

b

⑪

8) 1111111111111 or 00000

⑳
*

U1
*

- yes

P. 1 .: for plength
③ SowlweE

* 3 10151 = P

p .
I .: let S = ww 201y1 = 2

2
. g .,

if E = Ea
,
b

30 i xyr = p

and w= a baabb and p = 3
18 xy"zeB

- s = ababbab9abb
.

*
let

x = ab
, y = a

xyz = abaaabbabaabb

odd #, so obri not eB

3. "On in put <R
,

S) :

1
. Let the set X = L(R)

. let set
y

= Is
2 .

If (1r> n) = 0
,
accept

eise
, reject ?

